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What do we mean by magnetohydrodynamics ?

It is a fluid-like theoretical description for the dynamics of matter 
!
Baryonic matter in the Universe is mostly hydrogen.  
!
At temperatures above 104 K  it becomes a hydrogen plasma, i.e. a gas made of  protons  
and electrons 
!
The large scale behavior of this gas can be described through fluidistic equations  
(Navier-Stokes). 
!
This fluid is made of electrically charged particles and therefore it suffers electric and  
magnetic forces. 
!
Not only that, these charges are sources of self-consistent electric and magnetic fields. 
Therefore, the fluid equations will couple to Maxwell’s equations. 
!
At small spatial scales (and fast timescales) non-fluid or kinetic effects become  
non-negligible. 



What does MHD mean?

Many  laboratory, astrophysical and space plasmas can properly be described within the 
theoretical  framework of Magnetohydrodynamics (MHD). !!
MHD is a fluidistic approach to describe the large scale dynamics of plasmas.  !!
It involves the Navier-Stokes equation for the motion of the plasma subjected to electric and 
magnetic  forces, coupled to Maxwell’s equations to describe the evolution of the self-consistent 
electric  and magnetic fields. !!
Physical processes that can be addressed with MHD include: 
o  Magnetic reconnection 
o  Magnetic confinement  
o  Magnetic dynamo 
o  MHD turbulence !!
We will also address the case of plasmas embedded in strong external magnetic fields, which  
allow for an approximation known as reduced MHD (RMHD). !
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The equations for the fluid are:
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The induction equation arises by combining Ampere’s law  
and Ohm’s law
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We also have Ohm’s law  written in the fluid’s reference frame 

Magnetic pressure  
and magnetic tension

Frozen-in condition

MHD equations
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Fluid equations for multi-species plasmas
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➢ For each species s we have (Goldston & Rutherford 1995): !!
o        Mass conservation !!!
o        Equation of motion !!!
o        Momentum exchange rate !!!
➢These moving charges act  as sources for electric and magnetic fields: !!!
o        Charge density (charge neutrality) !!!
o        Electric current density
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Two-fluid MHD equations
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➢ For a fully ionized plasma with ions of mass        and massless electrons (since                     ): !!
o        Mass conservation: !!
o        Ions: !!
o        Electrons: !!
o        Friction force:  !!!
o        Ampere’s law: !!!
o        Polytropic laws: !!
o        Newtonian viscosity:
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Hall-MHD equations

➢ The dimensionless version, for a length scale     , density       and Alfven speed0L 0n 00 4/ nmBv iA π=
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➢ We define the Hall parameter !!
    as well as the plasma beta                                       and the electric resistivity !!
➢ Adding  these  two equations yields: !!
➢ On the other hand, using 
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equations



Energy cascade 
  - energy flux toward high k 
  - vortex breakdown 
!
Scale invariance  
   - energy flux in k: 
!
   - energy power spectrum: 
!
!
!
!
!
Therefore
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We studied a number of astrophysical problems, within the general framework of MHD: !
3D Hall-MHD turbulent dynamos.  
(Mininni, Gomez & Mahajan 2003, 2005; 
Gomez, Dmitruk & Mininni 2010) !
2.5 D Hall-MHD magnetic reconnection  
in the Earth magnetosphere 
(Morales, Dasso & Gomez 2005, 2006) !
3D HD helical fluid turbulence 
(Gomez & Mininni 2004) !
RMHD heating of solar coronal loops 
(Dmitruk & Gomez 1997, 1999) !
RHMHD turbulence in the solar wind 
(Martin, Dmitruk & Gomez 2010, 2012) !
Hall magneto-rotational instability in accretion disks 
(Bejarano, Gomez & Brandenburg 2011)

Various applications



Coronal Heating

The solar corona is a topologically complex  
array of loops (TRACE movie 171 A) !
Coronal loops are magnetic flux tubes  
with their footpoints anchored deep in the 
convective region. !
They confine a tenuous and hot plasma.  
Typical densities are n = 109 cm-3 and  
temperatures are T = 2-3.106 K.

The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up 
to coronal temperatures (Parker 1972, 1988; van Ballegooijen 1986; Einaudi et al. 1996).  !
One of the key ingredients is the free energy available in the sub-photospheric convective region. 
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses.  !
However, the  typical length scale of these magnetic stresses is way  
too large for the Ohmic dissipation to do the job, since 

ητ /2ℓ≈diss



Reduced MHD (RMHD)

Reduced MHD is a self-consistent approximation of the full MHD equations whenever: 
  (a) one component of the magnetic field is much stronger than the others and,  
  (b) spatial variations are smoother along  than across (Strauss 1976). 
!
!
!
!
!
!
!
!
These equations describe the evolution of the velocity  
field (u) and magnetic field (b)   
inside the box, assuming periodic  
boundary conditions at the sides. 
!
 We enforce stationary velocity  
 fields (Uph) at the top plate. 
Granules size is        and the  
turnover time is tph. 
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Numerical simulations

We integrate the RMHD eqs. numerically, using a spectral scheme in the  
perpendicular directions and finite differences along the (much smoother)  
direction z (Gomez, Milano and Dmitruk 2000; also Dmitruk, Gomez &  
Matthaeus 2003) !!!
We show results from 512x512x40 runs performed in (CAPS), our  
linux cluster with 80 cores !!!
For the horizontal spatial derivatives, we use a pseudo-spectral  
scheme with 2/3-dealiasing. Spectral codes are well suited for  
turbulence studies, since they provide exponentially fast convergence.  
Spatial derivatives along the loop are computed using finite differences. !!!
Time integration is performed with a second order Runge-Kutta  
scheme.The time step is chosen to satisfy the CFL condition. 



Magnetic field lines

Fieldlines are computed for a simulation 
driven by two gaussian vortices at the upper 
boundary. !!
Blue and yellow fieldlines simply correspond 
to different vortices. !!
At early times, only the progressive twist  
of two flux tubes can be observed. !!
As time evolves, we see how fieldlines  
from different vortices literally reconnect,  
i.e. they start in one vortex and end up  
on the other. 



Current density distribution

Current density

Z=0                     z=0.5                     z=1

time 



RMHD Simulations

We perform long time integrations of the RMHD 
equations. Lengths are in units of the photospheric 
convective motions (      ) and times are in units of the 
Alfven time (tA) along the loop. 
!
Spatial resolution is 512x512x40 and the integration 
time is 4000 tA. We use a spectral scheme in the xy-
plane and finite differences along z. !
The time averaged dissipation rate is found to scale  
like (Dmitruk & Gómez 1999) !!!!!!!!!!
It is essentially independent of the Reynolds number, 
as expected for stationary turbulence. 
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Energy power spectra

The energy spectra are shown here. The red lines  
correspond to ten spectra taken at different times  
(separated by 10 tA). The blue trace is the time  
averaged version. 
!
!
The Kolmogorov slope is displayed for reference, but  
the moderate spatial resolution of these runs is  
insufficient for a serious spectral analysis.  
!
!
Viscosity and resistivity are large enough to spatially  
resolve the dissipative structures properly. 
   

!
The spectra of kinetic energy (not shown) remain  
much smaller than magnetic energy, although they  
tend to equipartition at the largest wavenumbers.
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Energy power spectra
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Current sheet formation

Most of the energy dissipation takes place in current sheets.  We display the current density 
(upflows & downflows) along the loop in a transverse cut.

Versus height. Versus time.



Current sheets in 3D

3D distribution of the energy dissipation rate. !
We display the dissipation rate during 20 
Alfven times with a cadence of 0.1 tA.



The complete time series of energy dissipation rate is displayed below. It shows a mean value  
(consistent with the scaling law given above) plus a rather spiky structure.

Energy dissipation rates



Dissipative events

We associate the intermittent bursts of dissipation with Parker´s nanoflares (Parker 1988). !
To carry out our statistical analysis, we draw a threshold and count as events everything that 
pops up above that line.

For each event, we 
compute its peak  
dissipation (Pi), its  
total dissipated  
energy (Ei), and its  
duration (Ti). !
We compute  
histograms for these 
quantities and look  
for correlations  
between them.



Histograms of dissipation events

Histograms of energies, peak dissipation rates and durations display a power law 
  behavior. We estimated the slopes using standard fitting techniques.



Observed power laws

It is also consistent with the energy  
distributions derived from observations 
(Aschwanden 2000). !
The total energy dissipation rate can be 
simply obtained as !!!!!!
For slopes flatter than –2 (which seems 
to be the case) the dissipation is 
dominated by the large events. !
For slopes steeper than –2, small  
events dominate instead.
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Conclusions

We introduced  the MHD equations, which is an adequate theoretical framework 
to describe the large scale behavior of a number of astrophysical and laboratory 
applications.  
!
!
We also presented to so called reduced approximation, which  is appropriate  
for  plasmas embedded in relatively strong magnetic fields.  
!
!
As an astrophysical application, we showed RMHD simulations to study the  
internal dynamics of magnetic loops in the solar corona. 
!
!
The development of a turbulent MHD regime in coronal loops  increases the 
heating rate to levels comparable to the radiative cooling of these loops.  
!
. 



➢ We focus on Fourier-Galerkin methods. Let us illustrate on Burgers equation 
!
!
!
for u(x,t) on the interval                        assuming periodic boundary conditions and 
the initial condition  
!
➢ We expand in a truncated Fourier expansion 
!
➢ Demanding zero projection of the solution u(x,t) on the truncated Fourier space 
!
!
!
!
➢ This truncated expansion                  converges exponentially fast to the exact 
solution as   
!
However, it is computationally very demanding, it involves                  operations.
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Simulations: spatial integration



!
➢ The FFT algorithm yields the discrete set         from the set               after                        
floating point operations. 
!
!
!
➢ The strategy of computing spatial derivatives in Fourier space and nonlinear terms  
in physical space, is known as pseudo-spectral, i.e.  
!
!
➢ The relation between discrete Fourier coefficients           and the continuous ones is  
!
!
➢ This sum causes a spurious effect known as aliasing when computing nonlinear terms. 
Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.
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Simulations: spatial integration



➢ We advance the solution through discrete time steps 
!
➢ In compact notation, if      
!
where F is a nonlinear and spatial differential operator, we use a second order 
Runge-Kutta scheme.  
!
➢ We first advance half a step 
!
!
and use                   to jump the whole step 
!
!
➢ This is second order accurate (i.e.                   ). The size of the step is limited by  
!
the CFL condition, i.e                               for 
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Simulations: temporal integration


