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What do we mean-by magnetohydrodynamics-?-

It is a fluid-like theoretical description for the dynamics of matter
Baryonic matter in the Universe is mostly hydrogen.

At temperatures above 10% K it becomes a hydrogen plasma, i.e. a gas made of protons
and electrons

The large scale behavior of this gas can be described through fluidistic equations
(Navier-Stokes).

This fluid is made of electrically charged particles and therefore it suffers electric and
magnetic forces.

Not only that, these charges are sources of self-consistent electric and magnetic fields.
Therefore, the fluid equations will couple to Maxwell’s equations.

At small spatial scales (and fast timescales) non-fluid or kinetic effects become
non-negligible.



@ Many laboratory, astrophysical and space plasmas can properly be described within the
theoretical framework of Magnetohydrodynamics (MHD).

MHD is a fluidistic approach to describe the large scale dynamics of plasmas.

It involves the Navier-Stokes equation for the motion of the plasma subjected to electric and
magnetic forces, coupled to Maxwell’s equations to describe the evolution of the self-consistent
electric and magnetic fields.

Physical processes that can be addressed with MHD include: Bo
o Magnetic reconnection 7
o Magnetic confinement //
o Magnetic dynamo
o MHD turbulence \
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We will also address the case of plasmas embedded in strong external magnetic fields, which
allow for an approximation known as reduced MHD (RMHD).
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@ We also have Ohm’s law written in the fluid’s reference frame

E*=E+%ﬁxl§= J

1
o

@ The induction equation arises by combining Ampere’s law
and Ohm'’s law
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Magnetic pressure
and magnetic tension

Frozen-in condition
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> For each species s we have (Goldston & Rutherford 1995):
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@) Mass conservation
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o Momentum exchange rate R  =-— m, I’ZSU " (U - U o )
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>These moving charges act as sources for electric and magnetic fields:

o Charge density (charge neutrality) P, = E q.n, = 0
S
o Electric current density j — i 6 % E - E q.n (7
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> For a fully ionized plasma with ions of mass 71, and massless electrons (since m, << m,):
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o Electrons: 1 -
=—en(E+ U x B) - Vpe R

o Friction force: _
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@ Polytropic laws: y y
p I < n b p e xn

o Newtonian viscosity:

=u ,U; +9,U,)



> The dimensionless version, for a length scale LO, density 71, and Alfven speed Vy= Bo / V 4Icml.n0
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@ Energy cascade
- energy flux toward high k
- vortex breakdown

@ Scale invariance

- energy flux in k:

F(k), Fk) (cm’/s?)

- . —
energy power spectrum: injection

Tl 107
k, (cm™)

@ [herefore

Kolmogorov spectrum (K41)
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Various applications

@ We studied a number of astrophysical problems, within the general framework of MHD:

@ 3D Hall-MHD turbulent dynamos.
(Mininni, Gomez & Mahajan 2003, 2005;
Gomez, Dmitruk & Mininni 2010)

@ 2.5 D Hall-MHD magnetic reconnection
in the Earth magnetosphere
(Morales, Dasso & Gomez 2005, 2006)

@ 3D HD helical fluid turbulence
(Gomez & Mininni 2004)

@ RMHD heating of solar coronal loops
(Dmitruk & Gomez 1997, 1999)

@ RHMHD turbulence in the solar wind
(Martin, Dmitruk & Gomez 2010, 2012)

@ Hall magneto-rotational instability in accretion disks
(Bejarano, Gomez & Brandenburg 2011)




@ The solar corona is a topologically complex
array of loops (TRACE movie 171 A)

@ Coronal loops are magnetic flux tubes
with their footpoints anchored deep in the
convective region.

@ They confine a tenuous and hot plasma.
Typical densities are n = 10° cm=3 and
temperatures are T = 2-3.106 K.

@ The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up
to coronal temperatures ( ).

@ One of the key ingredients is the free energy available in the sub-photospheric convective region.
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses.

@ However, the typical length scale of these magnetic stresses is way
too large for the Ohmic dissipation to do the job, since

Tdiss = fz /n
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Reduced MHD (RMHD)

@ Reduced MHD is a self-consistent approximation of the full MHD equations whenever:
(a) one component of the magnetic field is much stronger than the others and,
(b) spatial variations are smoother along than across (Strauss 1976).

d,a=v,0.¢+[p,al+nV’a U,
dw=v,0.j+[p,0]-[a/]+MV® z-r it L

b =vA2+§Lx(a2) , ﬁ=§Lx(cp2)
W = _Vicp ) ] = _Via
@ These equations describe the evolution of the velocity
field (u) and magnetic field (b)

inside the box, assuming periodic
boundary conditions at the sides.

@ We enforce stationary velocity
fields (U,,) at the top plate.

Granules size is (ph and the
turnover time is tpn.

»y ‘ 1! a2
Z2-0 =T / oy

- - [
in l'*




—

@ We integrate the RMHD eqgs. numerically, using a spectral scheme in the
perpendicular directions and finite differences along the (much smoother)
direction z (Gomez, Milano and Dmitruk 2000; also Dmitruk, Gomez &
Matthaeus 2003)

@ We show results from 512x512x40 runs performed in (CAPS), our
linux cluster with 80 cores

@ For the horizontal spatial derivatives, we use a pseudo-spectral
scheme with 2/3-dealiasing. Spectral codes are well suited for
turbulence studies, since they provide exponentially fast convergence.
Spatial derivatives along the loop are computed using finite differences.

@ Time integration is performed with a second order Runge-Kutta
scheme.The time step is chosen to satisfy the CFL condition.




Fieldlines are computed for a simulation
driven by two gaussian vortices at the upper
boundary.

Blue and yellow fieldlines simply correspond
to different vortices.

At early times, only the progressive twist
of two flux tubes can be observed.

As time evolves, we see how fieldlines
from different vortices literally reconnect,
i.e. they start in one vortex and end up
on the other.



Current density distribution

Current density
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We perform long time integrations of the RMHD
equations. Lengths are in units of the photospheric
convective motions (f ) and times are in units of the

Alfven time (t,) along the loop.

Spatial resolution is 512x512x40 and the integration
time is 4000 t,. We use a spectral scheme in the xy-

plane and finite differences along z.

The time averaged dissipation rate is found to scale

like (Dmitruk & Gomez 1999)
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It is essentially independent of the Reynolds number,
as expected for stationary turbulence.
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@ The energy spectra are shown here. The red lines
correspond to ten spectra taken at different times
(separated by 10 t,). The blue trace is the time

averaged version.

@ The Kolmogorov slope is displayed for reference, but
the moderate spatial resolution of these runs is
insufficient for a serious spectral analysis.

@ Viscosity and resistivity are large enough to spatially
resolve the dissipative structures properly.

@ The spectra of kinetic energy (not shown) remain
much smaller than magnetic energy, although they

tend to equipartition at the largest wavenumbers.

Kolmogorov spectrum (K41)
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Current sheet formation

GAP

* Most of the energy dissipation takes place in current sheets. We display the current density
{ & ) along the loop in a transverse cut.

-

* Versus height. * Versus time.



Current sheets ins3D

# 3D distribution of the energy dissipation rate. time=00.1 &
« We display the dissipation rate during 20
Alfven times with a cadence of 0.1 t,.
fime=14.0 %, \f/_,_./’f’-‘




@ The complete time series of energy dissipation rate is displayed below. It shows a mean value
(consistent with the scaling law given above) plus a rather spiky structure.
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@ We associate the intermittent bursts of dissipation with Parker’s nanoflares (Parker 1988).

@ To carry out our statistical analysis, we draw a threshold and count as events everything that
pops up above that line.

@ For each event, we
compute its peak
dissipation (P,), its
total dissipated
energy (E;), and its

duration (T;).

Illl[lrrrlllll
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@ We compute
histograms for these
quantities and look
for correlations
between them.
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) Histograms of dissipation events

@ Histograms of energies, peak dissipation rates and durations display a power law
behavior. We estimated the slopes using standard fitting techniques.
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@ Itis also consistent with the energy
distributions derived from observations
(Aschwanden 2000).

@ The total energy dissipation rate can be
simply obtained as

Emax

e = [dEE f(E)

For slopes flatter than —2 (which seems
@ to be the case) the dissipation is
dominated by the large events.

For slopes steeper than -2, small
@ events dominate instead.
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- Conclusions™ =

@ We introduced the MHD equations, which is an adequate theoretical framework
to describe the large scale behavior of a number of astrophysical and laboratory
applications.

@ We also presented to so called reduced approximation, which is appropriate
for plasmas embedded in relatively strong magnetic fields.

@ As an astrophysical application, we showed RMHD simulations to study the
internal dynamics of magnetic loops in the solar corona.

@ The development of a turbulent MHD regime in coronal loops increases the
heating rate to levels comparable to the radiative cooling of these loops.



> \We focus on Fourier-Galerkin methods. Let us illustrate on Burgers equation

Ju+udu=vo u

for u(x,t) on the interval 0=x<2n assuming periodic boundary conditions and
the initial condition ~ #(x,0) = u,(x)

N/2 .
> We expand in a truncated Fourier expansion ——=> uN(x,t) = E u, (1) e”
k=—N/2

> Demanding zero projection of the solution u(x,t) on the truncated Fourier space

ou =—(wou) -vku , mou) = Yimuu

l+m=k

> This truncated expansion u" (x,?) converges exponentially fast to the exact
solutionas N — «

However, it is computationally very demanding, it involves (OQ(N*) operations.



> The FFT algorithm yields the discrete set {#,} from the set {#(x,)} after O(N logN)
floating point operations.

2 —
{u(xj),xj=§j,j=0,...,N—l} FFT {i, ,k=-N/2+1,...,.N/2}

> The strategy of computing spatial derivatives in Fourier space and nonlinear terms
in physical space, is known as pseudo-spectral, i.e.

ou =—-wou) -viku , (Wwou) =FFT(FFT"(u) FFT (iku))

> The relation between discrete Fourier coefficients 0} and the continuous ones is

ﬂk = Z/lk + r;)ulHNm
> This sum causes a spurious effect known as aliasing when computing nonlinear terms.
Aliasing effects can be suppressed by applying the “two-thirds rule”, i.e.

_ N
a,=0 , V [kl2N,

k



> We advance the solution through discrete time steps —=> ¢ =jA¢
l
> In compact notation, if d_U = F(U,t)

where F is a nonlinear and spatial differential operator, we use a second order
Runge-Kutta scheme.

At

> \We first advance half a step —D U”% _U'+ —F(Ui £)
2 ”'

1

and use ;ri+5;  tojump the whole ste i i il
U P = UM U+ MFU ™)

2

> This is second order accurate (i.e. 0((At)2) ). The size of the step is limited by

the CFL condition, i.e Af = Ax/u, for OJ,u=u,0.u



