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1. MHD
- basic equations, discretization, accuracy order, convergence
- conservative and dissipative equations- solution schemes
- parallelization
- examples for exercises: 

- Magnetopaus and magnetotail reconnection
- Kelvin Helmholtz instability

2. Kinetic simulation of collisionless plasmas
- basic equations: Vlasov; 
- Vlasov codes: finite volume discretization
- reversibility, filamentation and dissipation problem
- examples for exercises
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InvitationInvitation
There is an long series of
„International Schools and
Symposia of Space Plasma 
Simulation“, founded by M. 
Ashour-Abdalla, R. Gendrin, 
H. Matsumoto and H. Sato. 
Since their time, when
simulation was till at its
infancy, it trained the actual
generations of
„simulationists“. Next in 
Prague, June 2014
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Opened February 1st 2014: new
building of the MPS in Göttingen
Opened February 1st 2014: new
building of the MPS in Göttingen



Resistive two-fluid theory

+ an equation of state, closing for the pressure (e.g. adiabatic)



From two-fluid to MHD equations

+ an equation of state, closing for the pressure
(e.g. P = n gamma or a more complete energy equation

no charge separation e-i

only slow processes –
no displacement
currents



Equation of state, e.g. an energy eq.Equation of state, e.g. an energy eq.

))

To obtain a conservative 
energy equation in the ideal 
MHD limit -> 



Problems have to be well posedProblems have to be well posed
In mathematics a problem is called well posed, if
• The solution exists
• The solution is unique
• The solution depends continuously on the input

In numerical solutions a well posed problem is one
for which three conditions are met:

• Existence of the solution
• Uniqueness of the solution
• Continuous dependence on initial and boundary

conditions
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Solutions for initial and 
boundary conditions (BCs)
Solutions for initial and 
boundary conditions (BCs)

Definition: A solution of a partial 
differential equation (PDE) is a 
particular function u(x,y,z,t) that 1. 
satisfies the PDE in the domain of 
interest R(x,y,z,t)  and 
2. satisfies given initial (in time) 
and/ or boundary (in space) 
conditions (functions f,g).
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Open and periodic BCsOpen and periodic BCs

Periodic with line
symmetry
compatible with
3D solar coronal
extrapolated B-
field compatible
simulations, see
[Otto, Büchner, 
Nikutowski, 2008]

Periodic with line
symmetry
compatible with
3D solar coronal
extrapolated B-
field compatible
simulations, see
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Often: periodic boundary conditionsOften: periodic boundary conditions



Normalization is needed
since computers crunch
numbers.
Goal: numbers close to
unity to reduce the error.

Appropriate quantities for
normalization are, e.g.,
Bo; rhoi=n Mi; Lo;
This gives you also a time 
scale (Lo/Vao).
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Normalization of the equationsNormalization of the equations

Note: Ideal MHD is scale free. Quantities like resistivity and/or
viscosity (i.e. dissipation) introduce scales into MHD.
Note: Ideal MHD is scale free. Quantities like resistivity and/or
viscosity (i.e. dissipation) introduce scales into MHD.



In fluid dynamics -> two ways of specification of the 
flow field / how to look at the fluid motion:
1.  Eulerian: the observer focuses on specific 

locations in space through which the fluid 
flows passes with time. 

Compare: you sit on the bank of a river and watch 
the water and boat passing your fixed location 

2. Lagrangian: the observer follows an individual 
fluid element which moves through space and 
time.

Compare: you sit in a boat which drifts down a river.
.
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Eulerian approach: discrete 
grid (mesh) here for one spatial 
dimension (x) and time (t)

Eulerian approach: discrete 
grid (mesh) here for one spatial 
dimension (x) and time (t)

Discretization of the PDEsDiscretization of the PDEs
Discretization – simplest case: 
first order derivative
Discretization – simplest case: 
first order derivative



Schemes and accuracySchemes and accuracy
Different discretizations
schemes have been developed, 
• Finite difference codes
• Finite elements codes
• Finite volume
• Fourier-mode based codes …

Numerical error: depends on 
the step size
Order of accuracy: Higher order 
schemes provide higher 
accuracy for the same step size 
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schemes provide higher 
accuracy for the same step size 

But higher order schemes:
- require more complex 

programming
- inclusion of modifications i.e. 

of more physics are very 
difficult

- they are more error prone
- boundary conditions are more

complicated to imply and 
change

- The Minimum should be 
second order in steps size

- This is usually also the
optimum between necessary
accuracy and numerical

costs / effort !

But higher order schemes:
- require more complex 

programming
- inclusion of modifications i.e. 

of more physics are very 
difficult

- they are more error prone
- boundary conditions are more

complicated to imply and 
change

- The Minimum should be 
second order in steps size

- This is usually also the
optimum between necessary
accuracy and numerical

costs / effort !



Conservative equation solverConservative equation solver
Conservative equations can be 
efficiently discretized, e.g., by a 
second order accurate Leap-Frog 
scheme (n= time, i=spatial step):
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The Leap-Frog scheme 
requires two sets of initial 
values: in addition to the 
time step n one also has to 
prescribe a value for the 
time step n-1. While the 
values for the time step n-1
are given by the initial 
conditions the values at 
the following time step n 
are obtained by a time 
integration using a Lax 
method.
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order accurate in time and second 
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In astrophysics, also in the solar corona mostly
Rm ~ 108-10 >>> 1 such plasma is called “ideal“ , 
But non-ideality matters, e.g. for magnetic reconnection

Induction equation non-idealityInduction equation non-ideality
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From the MHD and Maxwell‘s equations
(Ohms law) an induction equation follows:
From the MHD and Maxwell‘s equations
(Ohms law) an induction equation follows:

Magnetic
Reynolds 
Number

Magnetic
Reynolds 
Number



Diffusion type equation solverDiffusion type equation solver
Since the Leap-Frog scheme does not solve a diffusive term, 
e.g. a DuFort-Frankel solver takes over for, e.g., calculating the 
resistive diffusion terms in the induction equation as well as 
the dissipation terms in the others equations - the diffusion 
equations are solved by utilizing a second order accurate 
DuFort-Frankel discretization. 
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Parallelization 1Parallelization 1
Modern computers allow 
the parallel use of many 
CPU cores. Example for 
there use is a 2D block 
data decomposition in the 
y and z directions for a 3D 
grid (individual domains 
are colored differently).
The domanis are assigned 
to different MPI- (Message 
Passing Instructions) 
tasks.
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Parallelization 2Parallelization 2
Block data decomposition (bold, 
black lines), 4 MPI tasks. The 
MPI rank of each sub-domain is 
given in the square brackets. 
Each rank has two coordinates, 
along the y and z direction. E.g. 
the sub-domain with rank 0 has 
Cartesian dimension (0,0), rank 1 
has (0,1). The decomposition in 
this example is done into 
subdomains for a grid of 1620 
points using 4 MPI tasks. 

Block data decomposition (bold, 
black lines), 4 MPI tasks. The 
MPI rank of each sub-domain is 
given in the square brackets. 
Each rank has two coordinates, 
along the y and z direction. E.g. 
the sub-domain with rank 0 has 
Cartesian dimension (0,0), rank 1 
has (0,1). The decomposition in 
this example is done into 
subdomains for a grid of 1620 
points using 4 MPI tasks. 
Different colors correspond to different subdomains and tasks. 
Starting and end points for each sub-domain are labeled Ys; Zs
and Ye; Ze, respectively.



Parallelization 3Parallelization 3

Computing time of a complete integration step versus the number 
of cores in logarithmic scale. Different colors correspond to 
different grid sizes. The dashed color lines are the ideal scaling for 
each grid. The horizontal dotted lines connects the points which 
belong to the weak scaling. The diamond symbols correspond to 
runs using an efficient MPI parallelization (GOEMHD3 code) 

Computing time of a complete integration step versus the number 
of cores in logarithmic scale. Different colors correspond to 
different grid sizes. The dashed color lines are the ideal scaling for 
each grid. The horizontal dotted lines connects the points which 
belong to the weak scaling. The diamond symbols correspond to 
runs using an efficient MPI parallelization (GOEMHD3 code) 



Ideal plasmas move together with
the B-field (Alfven's theorem)
Ideal plasmas move together with
the B-field (Alfven's theorem)
“If the magnetic flux through a circuit of fluid particles of the 
solar stream vanishes initially, it must vanish at all times.”

I.e. if there us a flux at t=0 it moves together wit the plasma



Indeed 1930: 1. solar wind interaction
model – a closed magnetic cavity is formed
Indeed 1930: 1. solar wind interaction
model – a closed magnetic cavity is formed

-> First models: 
interaction of an
infinitely
conducting gas
of solar particles
with a magnit – in 
the Earth -> 
closed
magnetosphere
(1950ties: 
“MAGNETOPAUSE“

[Chapman and Ferraro, 1930]
Solar particle „Stream“ - from the left
toward the „Earth“ (mirrored words)
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Now we know: the magnetopause
(MP) is opening to the solar wind
Now we know: the magnetopause
(MP) is opening to the solar wind

Left figure: 
“Closed” 
magnetosphere 
inside the blue
dashed
magnetopause

Right figure: 
Red: „Open“ 
magnetospheric
field lines:
Reconnection 
connects



Plasma discontinuitiesPlasma discontinuities

<- closed boundary

-> open boundary



Mechanism: Magnetic reconnection Mechanism: Magnetic reconnection 
Requires large anti-parallel magnetic field components 

Delta Va > Va
Requires large anti-parallel magnetic field components 

Delta Va > Va
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Allows transport of plasma across the MPAllows transport of plasma across the MP



Simulation excercise No.1: 
Magnetopause reconnection
Simulation excercise No.1: 
Magnetopause reconnection

Velocity, B field lines, By; total pressure; velocity, B field lines, density



Single (bursty) MP reconnectionSingle (bursty) MP reconnection



Bursty MP flux transfer eventsBursty MP flux transfer events

suggested by Russell and Elphic



Viscous interactionViscous interaction
Pattern of the 
plasma 
convection 
driven by 
viscous 
interaction
between the 
solar wind 
with a the 
earth’s  
magnetosphe
ric plasma 
[Axford and
Hines, 1961]



Kelvin Helmholtz instabilityKelvin Helmholtz instability
A Kelvin–Helmholtz instability (after Lord Kelvin and Hermann von 
Helmholtz) occurs (a) due to a velocity shear in a single fluid/gas, or 
(b) due velocity differences across the interface between two 
fluids/gases of different  density. 
e.g. at boundaries in neutral atmospheric gases, in water:
(wind blowing over water cause water surface waves; cloud 
formation and Saturn's bands – see below - Jupiters red spot…)

and also in (magnetized) 
plasmas like in 
the Sun's corona or at
magnetopauses, the
interfaces between stellar winds and magnetospheres ….

A Kelvin–Helmholtz instability (after Lord Kelvin and Hermann von 
Helmholtz) occurs (a) due to a velocity shear in a single fluid/gas, or 
(b) due velocity differences across the interface between two 
fluids/gases of different  density. 
e.g. at boundaries in neutral atmospheric gases, in water:
(wind blowing over water cause water surface waves; cloud 
formation and Saturn's bands – see below - Jupiters red spot…)

and also in (magnetized) 
plasmas like in 
the Sun's corona or at
magnetopauses, the
interfaces between stellar winds and magnetospheres ….



But:  MHD waves are different

Compressible
Magnetosonic waves
- parallel: slow and

fast waves
- perpendicular: only

fast waves
• cms = (cs

2+vA2) 1/2

Incompressible
Schear Alfvén
Welle; parallel 
propagation:
vA = B/(4)1/2
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Kelvin Helmholtz instability –
magnetopause case
Kelvin Helmholtz instability –
magnetopause case

Ideal MHD-instability, requires Delta V > Va along the k vector of the waveIdeal MHD-instability, requires Delta V > Va along the k vector of the wave

Causes transport of momentum and energy by turbulent viscosity



Simulation exercise No. 2: 
Kelvin-Helmholtz instability (MP)
Simulation exercise No. 2: 
Kelvin-Helmholtz instability (MP)

Unstable growth, if Delta V > Va along the k vector of the mode
Plasma flow velocities and density evolution: 
Unstable growth, if Delta V > Va along the k vector of the mode
Plasma flow velocities and density evolution: 



Reconnection in KH vorticesReconnection in KH vortices

mass diffusion coefficient D=10^9 m^2s^-1 
 [From Otto et al.]
mass diffusion coefficient D=10^9 m^2s^-1 
 [From Otto et al.]



The open magnetosphere controlThe open magnetosphere control
(A) Southward
Interplanetary B-
field -> strong 
dayside
reconnection
controls the MSP 
convection.
(B) Northward
Interplanetary B-
field -> 
reconnection
behind the cusps
of the MSP.
Suggested by
[Dungey,1961]



The Earth‘s magnetotailThe Earth‘s magnetotail
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Magnetotail reconnectionMagnetotail reconnection
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Substorm sequenceSubstorm sequence



Substorms and „current-wedge“Substorms and „current-wedge“

•jR•jR

From: [R. L. McPherron, Magnetospheric substorms, Rev. Geophys. Space Phys.]From: [R. L. McPherron, Magnetospheric substorms, Rev. Geophys. Space Phys.]

Enhanced 
westward
electrojet
in the
ionosphere

Enhanced 
westward
electrojet
in the
ionosphere



Start from an EquilibriumStart from an Equilibrium

Tail-like Harris (1962) 
- type  equilibrium
Tail-like Harris (1962) 
- type  equilibrium
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Plasma velocity; current density; mass densityPlasma velocity; current density; mass density

Simulation exercise No. 3: 
Magnetotail reconnection

Simulation exercise No. 3: 
Magnetotail reconnection



2. Kinetic plasma physics via    
Vlasov and PIC code simulations
2. Kinetic plasma physics via    
Vlasov and PIC code simulations

Most of the astrophysical plasmas are hot and dilute
(rare in the sense of large distances between the
particles and a small probability of their collisions).

MHD does address the physics of individual particles
and their interaction which includes resonance
effects, particle acceleration, the balance of electric
fields in collisionless reconnection, dissipation, 
microscopic origin of turbulence …
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microscopic origin of turbulence …



Collisionless plasmaCollisionless plasma
Discrete particles:  Mean free path 
between two particle collisions  ->

The collision frequeny ->
... has to be compared with the

continuous fluid plasma
eigenfrequency ->

if the ratio of the two which vanishes
if plasma is „collisionless“
With the Debye length ->

Discrete particles:  Mean free path 
between two particle collisions  ->

The collision frequeny ->
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continuous fluid plasma
eigenfrequency ->

if the ratio of the two which vanishes
if plasma is „collisionless“
With the Debye length ->
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defined as the inverse of the
number of particles in a Debye 
sphere (here: cube)
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When are plasmas collsionless?When are plasmas collsionless?
Temporal condition:

A plasma has to be
considered collsionless
for times << tau
Fusion plasmas: 
g= 10-9-10-7

astrophysical plasmas:
g= 10-19-10-13

These numbers are very, 
very small, though finite. 

Temporal condition:
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considered collsionless
for times << tau
Fusion plasmas: 
g= 10-9-10-7

astrophysical plasmas:
g= 10-19-10-13

These numbers are very, 
very small, though finite. 

Pulsar magnetospheres

Metals

• Flames

Solar fusion

Solar Wind

Galaxies

• Interstellar

Laboratory fusion

Solar
corona

T=mc^2

Ionosphere

T=EF

n LD^-3  =1

Photosphere

•Plasma density•Plasma density

Spatial
condition:
Spatial
condition:



Scales of typical plasma
phenomena e.g. the solar corona

Scales of typical plasma
phenomena e.g. the solar corona

Dissipation 
scale c/pi

Dissipation 
scale c/pi

Large scale
structures
and flows

Large scale
structures
and flows

106 - 107106 - 107
log k Llog k L

MHD 
investigations
address the
physics of
large scale
structures and
flow.

MHD 
investigations
address the
physics of
large scale
structures and
flow.



Typical numbers for the SunTypical numbers for the Sun

n De c /pi

108 cm-3 0.7 cm 20 m

1011 cm-3 0.02 cm 0.7 m

Plasma temperature Te ~ Ti ~ 106 K

While the size of observed objects is: L  ~ 107 m !



Scales and related phenomenaScales and related phenomena

... ideal plasma conditions in 
solar coronae -> 
... ideal plasma conditions in 
solar coronae -> 

cmcm



Governing: Vlasov equationGoverning: Vlasov equation



1938: Equation used by Vlasov1938: Equation used by Vlasov

A.A. Vlasov: „About the vibrational
properties of an electron gas“
J. Exp. Theor. Phys., 8, 291-318, 1938

A.A. Vlasov: „About the vibrational
properties of an electron gas“
J. Exp. Theor. Phys., 8, 291-318, 1938



Vlasov‘s equationVlasov‘s equation

• … and for high frequency
applications neglect ions and describe the electron gas alone ...

• … and for high frequency
applications neglect ions and describe the electron gas alone ...

neglects all
interactions

via
„collisions“

neglects all
interactions

via
„collisions“



Vlasov equation: df/dt =0 means conservation of the phase 
total phase space density volume f (Liouville theorem)
Vlasov equation: df/dt =0 means conservation of the phase 
total phase space density volume f (Liouville theorem)

Properties of the Vlasov equationProperties of the Vlasov equation

Any volume element 
becomes deformed  
under the action of 
electromagnetic and 
other forces like in an 
incompressible fluid. 
But its volume  
remains constant and, 
therefore, the number 
of particles contained 
in it.

Any volume element 
becomes deformed  
under the action of 
electromagnetic and 
other forces like in an 
incompressible fluid. 
But its volume  
remains constant and, 
therefore, the number 
of particles contained 
in it.
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Two of several possible equivalent forms for the evolution of
an incompressible flow in the 6 dimensional phase space
(Liouville theorem): 1.) advection form is okay for non-
relativistic plasmas, velocities are independent variables:

Two of several possible equivalent forms for the evolution of
an incompressible flow in the 6 dimensional phase space
(Liouville theorem): 1.) advection form is okay for non-
relativistic plasmas, velocities are independent variables:

Forms of the Vlasov‘s equationForms of the Vlasov‘s equation

Vlasov equations
close via Maxwell‘s
equations -> highly
nonlinear!

with E,B being the
mean electric and
magnetic fields, i.e

2.) Conservative form momenta as
variables, good for relativistic plasmas:
2.) Conservative form momenta as
variables, good for relativistic plasmas:



Specifics of Vlasov codesSpecifics of Vlasov codes
• The Liouville theorem allows filamentation to infinitely

small scales (property of the reversible Vlasov equation)
• 6 D phase space + time, all variables described by PDFs
• Boundary conditions:

– needed also for distribution functions / in the velocity
/ momentum space

• Initial conditions: 
– Vlasov solvers are noiseless -> In initial value

problems like instability analyses one needs to add
noise, e.g. 
» of the distribution functions or

» in the electromagnetic fields

• The Liouville theorem allows filamentation to infinitely
small scales (property of the reversible Vlasov equation)

• 6 D phase space + time, all variables described by PDFs
• Boundary conditions:

– needed also for distribution functions / in the velocity
/ momentum space

• Initial conditions: 
– Vlasov solvers are noiseless -> In initial value

problems like instability analyses one needs to add
noise, e.g. 
» of the distribution functions or

» in the electromagnetic fields



Example: J=const. + open 
boundary conditions

Example: J=const. + open 
boundary conditions



Vlasov-equation - integral formVlasov-equation - integral form
One can use a fully conservative integral form of the Vlasov
equation (due to the conservation of particle numbers, Liouville):
One can use a fully conservative integral form of the Vlasov
equation (due to the conservation of particle numbers, Liouville):



Finite volume discretizationFinite volume discretization

From [Elkina and Büchner]



Vlasov code simulation
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Here for a solver for the electromagnetic potential instad of 
the fields (div B = 0 is guaranteed)



Phase space filamentationPhase space filamentation

<-1D Distribution function
evolution due to wave-
particle-resonant 
interaction:
(Vx vs. X coordinate)

->Challenge for any
numerical treatment:
With time the gradient
scales reach the size of
the mesh! -> Closure
needed!

<-1D Distribution function
evolution due to wave-
particle-resonant 
interaction:
(Vx vs. X coordinate)

->Challenge for any
numerical treatment:
With time the gradient
scales reach the size of
the mesh! -> Closure
needed!



Vlasov code with stretched v-gridVlasov code with stretched v-grid

•Str = stretching factor•Str = stretching factor



Wave-particle interactionsWave-particle interactions
• Shifted electron distribution ->
• Instability via „inverse Landau 

damping“ ->
• wave growth, but: 
=> Wave saturation amplitude?
• If one neglects the modification

of the distribution function:
• 1962: Vedenov, Velikhov, 

Sagdeev & Drummond, Pines:
• Quasilinear theory, a weak

turbulence theory, if not
• large wave amplitudes / 

coherent structures instead of
phase mixing / strongly
changed distribution functions

• Shifted electron distribution ->
• Instability via „inverse Landau 

damping“ ->
• wave growth, but: 
=> Wave saturation amplitude?
• If one neglects the modification

of the distribution function:
• 1962: Vedenov, Velikhov, 

Sagdeev & Drummond, Pines:
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The strong nonlinearities
and action on particles
beyond quasi-linear theory
should be investigated by
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Linear IA instability for Ti ->TeLinear IA instability for Ti ->Te
a(x) is noise Linear dispersion for

Vde the drift Te = 2Ti (not, as
usual Te>> Ti)

a(x) is noise Linear dispersion for
Vde the drift Te = 2Ti (not, as

usual Te>> Ti)



Simulated ion-acoustic instabilitySimulated ion-acoustic instability
Mi/me =1800
Ti = 0.5 Te
Vde= 0.7 Vthe
Ve(max) 
= +- 8 Vte
The movie shows
the wave growth

Mi/me =1800
Ti = 0.5 Te
Vde= 0.7 Vthe
Ve(max) 
= +- 8 Vte
The movie shows
the wave growth

Vx vs. XVx vs. X



Results of wave-particle interaction
1D electron distribution in the current direction

<- electrons
• The movie

shows the
plateau-
formation in the
distribution
function near
the resonance
velocity and
electron heating



Consequence: current reduction
Ion distribution function Electron distribution function



Buneman instability if Ude> VteBuneman instability if Ude> Vte

• Te = 3 Ti • Te = 3 Ti 



Phase space evolutionPhase space evolution

<- electrons
• The movie

shows the
different 
reaction of
heavy ions and
light electrons

<- ions

<- electrons
• The movie

shows the
different 
reaction of
heavy ions and
light electrons

<- ions



Often used is a theoretical estimate of 
the  anomalous collision frequency 

based on waves and their 
dispersion (quasilinear approach):

Often used is a theoretical estimate of 
the  anomalous collision frequency 

based on waves and their 
dispersion (quasilinear approach):

The ensemble averaging of the Vlasov 
equation for

with
reveals

and

The ensemble averaging of the Vlasov 
equation for

with
reveals

and

„Anomalous“ collision rate„Anomalous“ collision rate
In a simulation one can directly 

determine the momentum 
exchange rate

In a simulation one can directly 
determine the momentum 

exchange rate



Linear instability growthLinear instability growth

wave energy 
starts to grow

effective, i.e. 
collisionless  
“collision rate”

f(Ve) <-> X  
(electron 
distribution 
function)

f(Vi) <-> X
(ion distribution 
function)
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function)
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Quasi-linear saturationQuasi-linear saturation

• wave energy

• anomalous
collision rate

• v <-> x  electrons

• v <-> x  ions

• wave energy

• anomalous
collision rate

• v <-> x  electrons

• v <-> x  ions



Trapping in electron holesTrapping in electron holes
 wave energy  at its 

maximum: 
 E^2 = 0.006 n T
 the electron hole 

effective  collision 
rate” nu= 0.05 pe

is close to  Sagdeev’s 
prediction:

 wave energy  at its 
maximum: 

 E^2 = 0.006 n T
 the electron hole 

effective  collision 
rate” nu= 0.05 pe

is close to  Sagdeev’s 
prediction:



Nonlinear island saturationNonlinear island saturation

 wave energy 
decreased 

 low “collision rate”
the electron current is 
reduced, the free 
energy exhausted, 

 islands cannot grow 
any further

 ions heated, but 
saturation at low 
quasilinear level 

 wave energy 
decreased 

 low “collision rate”
the electron current is 
reduced, the free 
energy exhausted, 

 islands cannot grow 
any further

 ions heated, but 
saturation at low 
quasilinear level 



Resulting IA collision rate vs. the 
quasi-linear estimate (blue)

Note that, 
for periodic
boundary
conditions,
after the free
energy is
exhausted,
the anomalous
collision rate 
decreases to
zero [from
Büchner & Elkina]



Electric field  Electron inertia  +  Pressure     + feff = “drag force” 
gradient due to 

collective wave-
particle interaction

Collisionless balance of E +v x B Collisionless balance of E +v x B 
Two-fluid electron equation of motion: -> “generalized Ohm’s law”:Two-fluid electron equation of motion: -> “generalized Ohm’s law”:
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In case of the corona: strong guide fields -> to the lowest order 
one-dimensional balance equation for Epar



Representing
for an appropriate averaging 
-> the Vlasov equation reveals:

after velocity-space integration, the momentum exchange rate is

-> What fluctuations / turbulence is generated in the corona? 
-> The correlations above have to be determined by kinetic 

numerical simulations!

Representing
for an appropriate averaging 
-> the Vlasov equation reveals:

after velocity-space integration, the momentum exchange rate is

-> What fluctuations / turbulence is generated in the corona? 
-> The correlations above have to be determined by kinetic 

numerical simulations!

Nature of the “drag force“Nature of the “drag force“



Excitation beyond quasi-linearityExcitation beyond quasi-linearity



Electron phase space holesElectron phase space holes

Electron phase space holes -> They grow and lead beyond the 
quasi-linearl (QL), weak turbulence theory  level.



Later also ion density holesLater also ion density holes

In case of open boundary conditions after electron density holes 
are formed (left plot) also ion holes are formed (right plot).

In case of open boundary conditions after electron density holes 
are formed (left plot) also ion holes are formed (right plot).



Hole potential-assymetric growthHole potential-assymetric growth

Net energy exchange becomes possible due to growing
asymmetries of the electron hole potential wells with a 
steepening leading edge. [Büchner & Elkina]



Growth of the AC E-field powerGrowth of the AC E-field power

Multi-stage non-linear evolution of the current instability for open 
boundaries: electron holes -> ion holes ->  e-s double layers



Finally – the ion holes merge 
into electrostatic double layers
Finally – the ion holes merge 
into electrostatic double layers

Inset: electrostatic potential around the double layer. The ion holes
merge into the double layer while the electron motion becomes
highly turbulent behind the layer [from Büchner & Elkina, 2006].



Quantify by „quasi-collision rates“Quantify by „quasi-collision rates“
Using the 
definition:
the „anomalous“ resistivity can be expressed as

or , in shorter terms, as 

with .....
where

Using the 
definition:
the „anomalous“ resistivity can be expressed as

or , in shorter terms, as 

with .....
where



Local „anomalous“ collision ratesLocal „anomalous“ collision rates

„Anomalous“ friction at phase space holes / DLs  while
locally particles can also gain enery -> the average matters!



Average „collision rates“Average „collision rates“

[Büchner 
and Elkina]:

The Rm, which
corresponds to
the threshold
Uccv > Vte for
the instability
l = c / _pi
= 20 m, V=
20 km/s and 
Nu=0.5 _pi
is
Rm ~ 1! 



2D current sheet instability2D current sheet instability



Effective „collision rates“: Solid (electric)                and dashed 
(magnetic fluctuations)               lines;
(Upper - thicker lines: electrons; Lower - thinner lines: ions

Effective „collision rates“: Solid (electric)                and dashed 
(magnetic fluctuations)               lines;
(Upper - thicker lines: electrons; Lower - thinner lines: ions

2D Current sheet „collision rates“2D Current sheet „collision rates“
In the solar
coronal plasma
these rates exceed
those of the 1D
instability by a factor 
of about 6
[Silin & Büchner]



3D  current sheet instability3D  current sheet instability

3D magnetic Nulls (simulation result by [Büchner & Kuska])



Result for the use in MHD 
simulations: turbulent resistivity

Result for the use in MHD 
simulations: turbulent resistivity

There is no indication for the estimate
of [Bunemann 1958] in the solar corona

Neglible:  binary particle collision
[Spitzer 56,  Härm–Braginski 63]

Magnetic diffusivity expressed via 
an effective „collision frequency“:

PIC and Vlasov code simulations revealed for the solar corona:
[Büchner, Kuska, Silin, Elkina, 99-08]
– 1D small beta: IA / double layers

– 2D higher beta – LH turbulence

- 3D highest beta: LH/kink sausage

~         LH~         LH



SummarySummary
• Both MHD and kinetic simulations are important

on their own rights – whatever one wants to
investigate:
– Large scale flows and instabilites, fluid 

turbulence -> MHD
– particle acceleration, collisionless dissipation, 

collisionles balancing of electric fields in 
reconection, microturbulence -> kinetic
approach

• Open question: What has not been achieved yet
is a direct coupling of the two approaches
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