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Coronal mass ejections: halo CMEs

Huge explosive solar phenomena

... SDO .... .......E.F

3600 angular width

Appear to envelop the Sun, forming a halo

Mostly geoeffective if earth-directed

But no one to one relationship between CMEs and GMS.

Less than 2.5% of all CMEs produced GMS during SC 23.
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CMEs, GMS and Space weather
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Sources of Geomagnetic storms
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Halo CMEs, GMS relationships

 

(a) 64%

(c) 18%

(b) 18%

 Sources of intense GMS in SC 23: (a) Full halo CMEs
(b) Partial halo CMEs; (c) no halo CMEs
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Geoeffective CMEs properties

1 Their ability to produce geomagnetic storms: In this study,
only Dst ≤ −50 nT.

2 halo CMEs: appear to surround the occulting disk of the
observing coronagraphs

3 Generally fast and wide and mostly associated with powerful
flares (Class X and M)

4 Full halo CMEs: apparent width (W) of 3600

5 partial halo CMEs: apparent width (W) of 1200 ≤ W ≤ 3600.

6 But still not very clear what kind of CMEs produce GMS,
some halo and front-sided CMEs do not have a geomagnetic
impact (Cane and Richardson, 2003)

7 For improving model prediction: Need to consider
interplanetary manifestations of CMEs
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IP medium: in situ ICMEs
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In situ SW parameters
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ANN prediction techniques

An interconnected assembly of processing elements, called units or
neurons

Can be trained to perform a particular function by adjusting the
values of the connections (weights) between the elements.

The network can deal with unseen patterns and generalize from the
training set.

Commonly used: three layer feed forward ANN.
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On the NN algorithms

If input, hidden and output layers are denoted by k, j and i

respectively, the net output can be described according to
Lundstedt,1994.

The output value of the NN is computed...

O
µ

i = g0





∑

j

Wijgh

(

∑

k

Wjkξ
µ

k

)



 , (1)

Wjk and Wij represent the weights from the input to hidden
layer and from hidden to the output layer respectively.

ξ
µ

k represents the input parameters used in this study
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ANN algorithms

Activation functions are needed to introduce the non-linearity
into the network. In this study, a logistic sigmoid activation
function ranging between 0 and 1 was used and for both
inputs and hidden and output nodes; represented by

Sigmoid activation function

g(o) = gh(x) =
1

1 + exp(−x)
, (2)

inputs can be either binary or continuous values

allow the outputs to be given a probabilistic interpretation
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ANN algorithms

During the training process, the input ξ
µ

k is presented to the
network together with its corresponding known output Oµ

and the network system learns the relationship that exists
between the two by adjusting the weights.

The training proceeds until the network error (E ) is minimized
according to the relation.

E =
1

2

∑

µ

(0µ
− Tµ)2 , (3)

Where T is the desired output and the sum is over all the
outputs in the training pattern.
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Solar and IP input parameters

Table:

Model parameter type parameter name variable type measure value

Inputs CME A.W Numeric ≥ 1200 -

[A]
CME speed Numeric value in km/s -

cfi Numeric - -

Vsw Numeric value in km/s -
[B]

Bs Numeric value in nT -

Outputs No storm Binary Dst > −50 nT 0
storm Binary Dst ≤ −50 nT 1
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Data sources

SOHO/LASCO CMEs catalogue list:
http://cdaw.gsfc.nasa.gov/CME

−
list

ftp://ftp.ngdc.noaa.gov/STP/GEOMAG/dst.html

fttp://ftp.ngdc.noaa.gov/
STP/SOLAR

−
DATA/SOLAR

−
FLARES

−
INDEX

http://www.ssg.sr.unh.edu/mag/ace/ACElists/obs
−

list.html
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Simplified FFNN architecture
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Model development

The model developed behaves like a function that estimates
the probability of storm occurrence an can be written as:

P = f (AWcmes ,Vcmes , cfi ,Bs ,Vsw ) (4)

Any output with value ≥ 0.5 was considered likelihod of
occurrence of a storm following a halo CME eruption.
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NN optimization

The best NN architecture is obtained by considering the
minimum RMSE value computed over the validation data set:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Pobs − Ppred )2, (5)

where Pobs (e.g.0 or 1) and Ppred represent the observed and
predicted probability.

Optimum NN obtained for only solar inputs [A] and combined
solar and IP inputs [A+B] as follows:
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NN optimization

Table: [A]+[B] inputs improve the estimate of the probability of storm
occurrence

Inputs NN architecture RMSE

[A] 3:3:1 0.5126
3:4:1 0.5137
3:5:1 0.5147
3:6:1 0.5155

[A]+[B] 5:5:1 0.3225
5:6:1 0.3396
5:7:1 0.3366
5.8:1 0.3376
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Prediction performance: some typical examples
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Model validation

The NN model was validated on 43 CME-driven storms, not
part of the training data set.

The percentage of correctly predicted storms is calculated as
follows:.

PE

OE
× 100 (6)

where PE is the number of correctly predicted storms and OE

the total number of observed GMS.

Optimum NN obtained for only solar inputs [A] and combined
solar and IP inputs [A+B] as follows:
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Table: Prediction performance:Validation of the model

Data set Storm category Observed Correct predictions False alarms
Training Intense storms 53 51 [96%]

Moderate storms 59 42 [71%]

Total 112 93 [83%] 32

Validation Intense storms 19 19 [100%]

Moderate storms 24 18 [75%]

Total 43 37 [86%] 8
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Conclusions
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Conclusions

1 A combination of solar and IP parameters characterising
geoeffective CMEs can be used in a NN model to improve the
predictability of storm occurrence probability.

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs



Conclusions

1 A combination of solar and IP parameters characterising
geoeffective CMEs can be used in a NN model to improve the
predictability of storm occurrence probability.

2 The developed model perform better on intense storms than
on moderate ones.

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs



Conclusions

1 A combination of solar and IP parameters characterising
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however most important for space weather (enough warning
time).
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Conclusions

1 A combination of solar and IP parameters characterising
geoeffective CMEs can be used in a NN model to improve the
predictability of storm occurrence probability.

2 The developed model perform better on intense storms than
on moderate ones.

3 A NN model using only solar inputs has lower performance,
however most important for space weather (enough warning
time).

4 The model overall estimate of the storm occurrence following
halo CME was: 86%.

5 Improved probability estimate compared to previous studies:

6 Valach et al.(2009): 48% used XRAs and RSPs in a NN model

7 Srivastava (2005): 77.7% using logistic regression model.
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