Geoeffectiveness of CMEs estimated with NNs

Uwamahoro, J.¹ McKinnell, L. A. ² Habarulema P. J.²

¹Kigali Institute of Education [KIE]

²²South African National Space Agency [SANSA]

Graz, 18 September 2012

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

- Solar and IP signatures of geoeffective halo CMEs
- Neural networks inputs + NN optimasation
- Results

(本語) (本語) (本語)

臣

Coronal mass ejections: halo CMEs

- Huge explosive solar phenomena
- ... SDOE.F
- 360⁰ angular width
- Appear to envelop the Sun, forming a halo
- Mostly geoeffective if earth-directed
- But no one to one relationship between CMEs and GMS.
- Less than 2.5% of all CMEs produced GMS during SC 23.

通 とう ほう ううせい

CMEs, GMS and Space weather

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

Sources of Geomagnetic storms

Figure:

Figure:

<ロ> (四) (四) (三) (三) (三) (三)

Halo CMEs, GMS relationships

Figure:

Figure:

<ロ> (四) (四) (三) (三) (三)

Э

Geoeffective CMEs properties

- Their ability to produce geomagnetic storms: In this study, only $Dst \leq -50$ nT.
- alo CMEs: appear to surround the occulting disk of the observing coronagraphs
- Generally fast and wide and mostly associated with powerful flares (Class X and M)
- Full halo CMEs: apparent width (W) of 360⁰
- **5** partial halo CMEs: apparent width (W) of $120^0 \le W \le 360^0$.
- But still not very clear what kind of CMEs produce GMS, some halo and front-sided CMEs do not have a geomagnetic impact (Cane and Richardson, 2003)

・ロト ・ 同ト ・ ヨト ・ ヨト

 For improving model prediction: Need to consider interplanetary manifestations of CMEs

IP medium: in situ ICMEs

Figure:

Figure:

・ロン ・回 と ・ ヨン ・ ヨン

Э

In situ SW parameters

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

206

- An interconnected assembly of processing elements, called units or neurons
- Can be trained to perform a particular function by adjusting the values of the connections (weights) between the elements.
- The network can deal with unseen patterns and generalize from the training set.
- Commonly used: three layer feed forward ANN.

ヨト イヨト イヨト

On the NN algorithms

• If input, hidden and output layers are denoted by *k*, *j* and *i* respectively, the net output can be described according to Lundstedt,1994.

The output value of the NN is computed...

$$O_{i}^{\mu} = g_{0} \left(\sum_{j} W_{ij} g_{h} \left(\sum_{k} W_{jk} \xi_{k}^{\mu} \right) \right), \qquad (1)$$

・ロン ・聞と ・ほと ・ほと

- W_{jk} and W_{ij} represent the weights from the input to hidden layer and from hidden to the output layer respectively.
- ξ_k^{μ} represents the input parameters used in this study

• Activation functions are needed to introduce the non-linearity into the network. In this study, a logistic sigmoid activation function ranging between 0 and 1 was used and for both inputs and hidden and output nodes; represented by

Sigmoid activation function

$$g(o) = g_h(x) = \frac{1}{1 + exp(-x)},$$
 (2)

御 と く ヨ と く ヨ と …

- inputs can be either binary or continuous values
- allow the outputs to be given a probabilistic interpretation

ANN algorithms

- During the training process, the input ξ_k^{μ} is presented to the network together with its corresponding known output O^{μ} and the network system learns the relationship that exists between the two by adjusting the weights.
- The training proceeds until the network error (*E*) is minimized according to the relation.

$$E = \frac{1}{2} \sum_{\mu} \left(0^{\mu} - T^{\mu} \right)^2, \qquad (3)$$

(日) (ヨ) (ヨ)

• Where *T* is the desired output and the sum is over all the outputs in the training pattern.

Table:

Model parameter type	parameter name	variable type	measure	value
Inputs	CME A.W	Numeric	$\geq 120^0$	-
[A]	CME speed	Numeric	value in km/s	-
	cfi	Numeric	-	-
[B]	Vsw	Numeric	value in km/s	-
	Bs	Numeric	value in nT	-
Outputs	No storm	Binary	Dst > -50 nT	0
	storm	Binary	$Dst \leq -50 \text{ nT}$	1

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

・ロン ・聞と ・ほと ・ほと

æ

- SOHO/LASCO CMEs catalogue list: http://cdaw.gsfc.nasa.gov/CME_list
- ftp://ftp.ngdc.noaa.gov/STP/GEOMAG/dst.html
- fttp://ftp.ngdc.noaa.gov/
 STP/SOLAR_DATA/SOLAR_FLARES_INDEX
- http://www.ssg.sr.unh.edu/mag/ace/ACElists/obs_list.html

白 ト イヨ ト イヨ ト

Simplified FFNN architecture

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

• The model developed behaves like a function that estimates the probability of storm occurrence an can be written as:

$$P = f(AW_{cmes}, V_{cmes}, cfi, B_s, V_{sw})$$

(4)

ヨト イヨト イヨト

 Any output with value ≥ 0.5 was considered likelihod of occurrence of a storm following a halo CME eruption.

NN optimization

 The best NN architecture is obtained by considering the minimum RMSE value computed over the validation data set:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (P_{obs} - P_{pred})^2},$$
(5)

伺 と く き と く き とう

- where P_{obs} (e.g.0 or 1) and P_{pred} represent the observed and predicted probability.
- Optimum NN obtained for only solar inputs [A] and combined solar and IP inputs [A+B] as follows:

Table: [A]+[B] inputs improve the estimate of the probability of storm occurrence

Inputs	NN architecture	RMSE
[A]	3:3:1	0.5126
	3:4:1	0.5137
	3:5:1	0.5147
	3:6:1	0.5155
[A]+[B]	5:5:1	0.3225
	5:6:1	0.3396
	5:7:1	0.3366
	5.8:1	0.3376

(ロ) (同) (E) (E) (E)

Prediction performance: some typical examples

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

200

Model validation

- The NN model was validated on 43 CME-driven storms, not part of the training data set.
- The percentage of correctly predicted storms is calculated as follows:.

$$\frac{PE}{OE} imes 100$$

(6)

伺い イヨト イヨト

- where *PE* is the number of correctly predicted storms and *OE* the total number of observed GMS.
- Optimum NN obtained for only solar inputs [A] and combined solar and IP inputs [A+B] as follows:

Table: Prediction performance: Validation of the model

Data set	Storm category	Observed	Correct predictions	False alarms
Training	Intense storms	53	51 [96%]	
	Moderate storms	59	42 [71%]	
	Total	112	93 [83%]	32
Validation	Intense storms	19	19 [<mark>100%</mark>]	
	Moderate storms	24	18 [75%]	
	Total	43	37 [<mark>86%</mark>]	8

UN/AUSTRIA/ESA Symposium on DAIPSASD, 18-21/09/012 Geoeffectiveness of CMEs estimated with NNs

(日) (同) (目) (日) (日) (日)

 A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.

個 と く ヨ と く ヨ と

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.

(4月) (4日) (4日)

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.
- A NN model using only solar inputs has lower performance, however most important for space weather (enough warning time).

・ 同下 ・ ヨト ・ ヨト

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.
- A NN model using only solar inputs has lower performance, however most important for space weather (enough warning time).
- The model overall estimate of the storm occurrence following halo CME was: 86%.

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.
- A NN model using only solar inputs has lower performance, however most important for space weather (enough warning time).
- The model overall estimate of the storm occurrence following halo CME was: 86%.
- Improved probability estimate compared to previous studies:

イロト イヨト イヨト イヨト

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.
- A NN model using only solar inputs has lower performance, however most important for space weather (enough warning time).
- The model overall estimate of the storm occurrence following halo CME was: 86%.
- Improved probability estimate compared to previous studies:
- Valach et al.(2009): 48% used XRAs and RSPs in a NN model

イロト イヨト イヨト イヨト

- A combination of solar and IP parameters characterising geoeffective CMEs can be used in a NN model to improve the predictability of storm occurrence probability.
- The developed model perform better on intense storms than on moderate ones.
- A NN model using only solar inputs has lower performance, however most important for space weather (enough warning time).
- The model overall estimate of the storm occurrence following halo CME was: 86%.
- Improved probability estimate compared to previous studies:
- Valach et al.(2009): 48% used XRAs and RSPs in a NN model

・ロン ・聞と ・ほと ・ほと

Srivastava (2005): 77.7% using logistic regression model.

References

- Ref: F. Valash et al. Solar energetic particle enhancement as a pedictor of geomagnetic acitvity in a neural network-based model, Space Weather, VOL.7,2009
- Ref: N. Srivastava A logistic regression model for predicting the occurrence of intense geomagnetic storms, Ann.Geoph., 23,2969-2974, 2005.
- Ref: J. Uwamahoro et al. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks, Ann.Geoph., 30,963-972, 2012.

・ 回 ト ・ ヨ ト ・ ヨ ト …

References

- Ref: F. Valash et al. Solar energetic particle enhancement as a pedictor of geomagnetic acitvity in a neural network-based model, Space Weather, VOL.7,2009
- Ref: N. Srivastava A logistic regression model for predicting the occurrence of intense geomagnetic storms, Ann.Geoph., 23,2969-2974, 2005.
- Ref: J. Uwamahoro et al. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks, Ann.Geoph., 30,963-972, 2012.

 Acknowledgements: UN/AUSTRIA/ESA for co-sponsoring me to attend the symposium!