NONEXTENSIVE STATISTICAL MECHANICS:

OUTER SPACE AND WEATHER

Constantino Tsallis

Centro Brasileiro de Pesquisas Físicas

and National Institute of Science and Technology for Complex Systems

Rio de Janeiro, Brazil

and

Santa Fe Institute, New Mexico, USA

SANTA FE INSTITUTE

Graz, September 2013

Enrico FERMI *Thermodynamics* (Dover, 1936)

The entropy of a system composed of several parts is very often equal to the sum of the entropies of all the parts. This is true if the energy of the system is the sum of the energies of all the parts and if the work performed by the system during a transformation is equal to the sum of the amounts of work performed by all the parts. Notice that these conditions are not quite obvious and that in some cases they may not be fulfilled. Thus, for example, in the case of a system composed of two homogeneous substances, it will be possible to express the energy as the sum of the energies of the two substances only if we can neglect the surface energy of the two substances where they are in contact. The surface energy can generally be neglected only if the two substances are not very finely subdivided; otherwise, it can play a considerable role.

EN ⁻	TROP	IC F	UNCT	IONALS

	1	$\forall n \ (0 \le n \le 1)$	additive
	$p_i = \overline{W} (\forall i)$	$V_{P_i} (0 = P_i = 1)$ W	Concave
		$\left(\sum p_i = 1\right)$	Extensive
	equiprobability	i=1	Lesche-stable
BG entropy	k ln W	$-k\sum_{i=1}^{W} p_i \ln p_i$	Finite entropy production per unit time
(<i>q</i> = 1)		<i>i</i> =1	Pesin-like identity (with
	$k \frac{W^{1-q}-1}{2}$	$k \frac{1 - \sum_{i=1}^{W} p_i^q}{q - 1}$	largest entropy production)
Entropy Sa			Composable
			Topsoe-factorizable (unique)
(q real)	1-q		Amari-Ohara-Matsuzoe conformally invariant
	/		geometry (unique)
Possible generalization of Boltzmann-Gibbs statistical mechanics			Biro-Barnafoldi-Van thermostat universal independence (unique)
[C.T., J	additive (if $q \neq 1$)		

DEFINITIONS: q - logarithm: $\ln_q x \equiv \frac{x^{1-q} - 1}{1-q}$ $(x > 0; \ \ln_1 x = \ln x)$ q - exponential: $e_q^x \equiv [1 + (1-q) x]^{\frac{1}{1-q}}$ $(e_1^x = e^x)$

Hence, the entropies can be rewritten:

	equal probabilities	generic probabilities
BG entropy $(q = 1)$	$k \ln W$	$k \sum_{i=1}^{W} p_i \ln \frac{1}{p_i}$
entropy S_q $(q \in R)$	$k \ln_q W$	$k \sum_{i=1}^{W} p_i \ln_q \frac{1}{p_i}$

TYPICAL SIMPLE SYSTEMS:

Short-range space-time correlations

e.g.,
$$W(N) \propto \mu^N \quad (\mu > 1)$$

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry

Short-range many-body interactions, weakly quantum-entangled subsystems

Linear/homogeneous Fokker-Planck equations, Gausssians

→ Boltzmann-Gibbs entropy (additive)

→ Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS:

Long-range space-time correlations

e.g., $W(N) \propto N^{\rho} \ (\rho > 0)$

Non-Markovian processes (long memory), Additive and multiplicative noises

Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry

Long-range many-body interactions, strongly quantum-entangled sybsystems

Nonlinear/inhomogeneous Fokker-Planck equations, *q*-Gaussians

→ Entropy Sq (nonadditive)

 \rightarrow *q*-exponential dependences (asymptotic power-laws)

ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment (Pergamon, Oxford, 1970), page 167

An entropy is additive if, for any two probabilistically independent systems *A* and *B*,

S(A+B) = S(A) + S(B)

Therefore, since

 $S_q(A+B) = S_q(A) + S_q(B) + (1-q) S_q(A) S_q(B) ,$

 S_{BG} and $S_q^{Renyi}(\forall q)$ are additive, and S_q ($\forall q \neq 1$) is nonadditive.

EXTENSIVITY:

Consider a system $\Sigma \equiv A_1 + A_2 + ... + A_N$ made of N (not necessarily independent) identical elements or subsystems A_1 and A_2 , ..., A_N .

An entropy is extensive if

$$0 < \lim_{N \to \infty} \frac{S(N)}{N} < \infty, i.e., S(N) \propto N \quad (N \to \infty)$$

<u>EXTENSIVITY OF THE ENTROPY</u> $(N \rightarrow \infty)$

If
$$W(N) \sim \mu^{N}$$
 $(\mu > 1)$
 $\Rightarrow S_{BG}(N) = k_{B} \ln W(N) \propto N$ OK!
If $W(N) \sim N^{\rho}$ $(\rho > 0)$
 $\Rightarrow S_{q}(N) = k_{B} \ln_{q} W(N) \propto [W(N)]^{1-q} \propto N^{\rho(1-q)}$
 $\Rightarrow S_{q=1-1/\rho}(N) \propto N$ OK!
If $W(N) \sim \mathbf{v}^{N^{\gamma}}$ $(\mathbf{v} > 1; 0 < \gamma < 1)$
 $\Rightarrow S_{\delta}(N) = k_{B} [\ln W(N)]^{\delta} \propto N^{\gamma \delta}$
 $\Rightarrow S_{\delta=1/\gamma}(N) \propto N$ OK!

IMPORTANT: $\mu^N >> v^{N^{\gamma}} >> N^{\rho}$ if N >> 1

PHYSICAL REVIEW E 78, 021102 (2008)

Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso¹ and Constantino Tsallis^{2,3}

¹NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
²Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
³Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008; revised manuscript received 16 May 2008; published 5 August 2008)

The Boltzmann–Gibbs–von Neumann entropy of a large part (of linear size L) of some (much larger) *d*-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to L^{d-1} . Here we show, for d=1,2, that the (nonadditive) entropy S_q satisfies, for a special value of $q \neq 1$, the classical thermodynamical prescription for the entropy to be extensive, i.e., $S_q \propto L^d$. Therefore, we reconcile with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato, Proc. Natl. Acad. Sci. U.S.A. **102** 15377 (2005)]. Finally, we find that the system critical features are marked by a maximum of the special entropic index q. SPIN ½ XY FERROMAGNET WITH TRANSVERSE MAGNETIC FIELD:

$$\hat{\mathcal{H}} = -\sum_{j=1}^{N-1} \left[(1+\gamma)\hat{\sigma}_{j}^{x}\hat{\sigma}_{j+1}^{x} + (1-\gamma)\hat{\sigma}_{j}^{y}\hat{\sigma}_{j+1}^{y} + 2\lambda\hat{\sigma}_{j}^{z} \right]$$
$$|\gamma| = 1 \qquad \rightarrow \text{ Ising ferromagnet}$$
$$0 < |\gamma| < 1 \qquad \rightarrow \text{ anisotropic XY ferromagnet}$$
$$\gamma = 0 \qquad \rightarrow \text{ isotropic XY ferromagnet}$$

 $\lambda \equiv transverse magnetic field$ $L \equiv length of a block within a N \rightarrow \infty chain$

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)

Using a Quantum Field Theory result in P. Calabrese and J. Cardy, JSTAT P06002 (2004) we obtain, at the critical transverse magnetic field,

$$q_{ent} = \frac{\sqrt{9 + c^2} - 3}{c}$$

with $c \equiv central \ charge$ in conformal field theory

Hence

Ising and anisotropic XY ferromagnets $\Rightarrow c = \frac{1}{2} \Rightarrow q_{ent} = \sqrt{37} - 6 \approx 0.0828$ and Isotropic XY ferromagnet $\Rightarrow c = 1 \Rightarrow q_{ent} = \sqrt{10} - 3 \approx 0.1623$

F. Caruso and C. T., Phys Rev E 78, 021101 (2008)

A Saguia and MS Sarandy, Phys Lett A 374, 3384 (2010)

D. Prato and C. T., Phys Rev E 60, 2398 (1999)

Milan j. math. 76 (2008), 307–328 © 2008 Birkhäuser Verlag Basel/Switzerland 1424-9286/010307-22, *published online* 14.3.2008 DOI 10.1007/s00032-008-0087-y

Milan Journal of Mathematics

On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics

Sabir Umarov, Constantino Tsallis and Stanly Steinberg

JOURNAL OF MATHEMATICAL PHYSICS 51, 033502 (2010)

Generalization of symmetric α -stable Lévy distributions for q > 1

Sabir Umarov,^{1,a)} Constantino Tsallis,^{2,3,b)} Murray Gell-Mann,^{3,c)} and Stanly Steinberg^{4,d)}

¹Department of Mathematics, Tufts University, Medford, Massachusetts 02155, USA ²Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

³Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

⁴Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 10 November 2009; accepted 4 January 2010; published online 3 March 2010)

(2013)

Rocca

and M.C.

Plastino

Ŕ

CENTRAL LIMIT THEOREM

 $N^{1/[\alpha(2-q)]}$ -scaled attractor $\mathbf{F}(\mathbf{x})$ when summing $N \to \infty$ q-independent identical random variables

with symmet	tric distribution $f(x)$ with σ_{ζ}	$Q = \int dx \ x^2 [f(x)]^Q / \int dx \ [f(x)]^Q \left(Q = 2q - 1, \ q_1 = \frac{1+q}{3-q}\right)$
	q = 1 [independent]	$q \neq 1$ (i.e., $Q \equiv 2q - 1 \neq 1$) [globally correlated]
$\sigma_Q < \infty$ ($\alpha = 2$)	F(x) = Gaussian G(x), with same σ_1 of $f(x)$ Classic CLT	$F(x) = G_q(x) \equiv G_{(3q_1-1)/(1+q_1)}(x), \text{ with same } \sigma_Q \text{ of } f(x)$ $G_q(x) \sim \begin{cases} G(x) & \text{if } x << x_c(q,2) \\ f(x) \sim C_q / x ^{2/(q-1)} & \text{if } x >> x_c(q,2) \end{cases}$ $with \ \lim_{q \to 1} x_c(q,2) = \infty$ S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
$\sigma_Q \to \infty$ $(0 < \alpha < 2)$	$F(x) = Levy \ distribution \ L_{\alpha}(x),$ with same $ x \rightarrow \infty$ behavior $L_{\alpha}(x) \sim \begin{cases} G(x) & \text{if } x << x_{c}(1, \alpha) \\ f(x) \sim C_{\alpha} / x ^{1+\alpha} & \text{if } x >> x_{c}(1, \alpha) \end{cases}$ with $\lim_{\alpha \rightarrow 2} x_{c}(1, \alpha) = \infty$ Levy-Gnedenko CLT	$F(x) = L_{q,\alpha} , \text{ with same } x \rightarrow \infty \text{ asymptotic behavior}$ $\begin{cases} G_{\frac{2(1-q)-\alpha(1+q)}{2(1-q)-\alpha(3-q)}, \alpha}(x) \sim C_{q,\alpha}^* / x ^{\frac{2(1-q)-\alpha(3-q)}{2(1-q)}} \\ \text{ (intermediate regime)} \end{cases}$ $L_{q,\alpha} \sim \begin{cases} G_{\frac{2\alpha q - \alpha + 3}{\alpha + 1}, 2}(x) \sim C_{q,\alpha}^L / x ^{(1+\alpha)/(1+\alpha q - \alpha)} \\ \text{ (distant regime)} \end{cases}$ S. Umarov, C. T., M. Gell-Mann and S. Steinberg
		J Math Phys 51, 033502 (2010)

PHYSICAL REVIEW E 84, 021121 (2011)

Group entropies, correlation laws, and zeta functions

Piergiulio Tempesta*

Departamento de Física Teórica II, Facultad de Físicas, Ciudad Universitaria, Universidad Complutense, E-28040 Madrid, Spain (Received 15 February 2011; revised manuscript received 3 May 2011; published 10 August 2011)

The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

$$S_{q} \leftrightarrow \frac{1}{(1-q)^{s-1}} \zeta(s) \quad (q < 1)$$

with $\zeta(s) \equiv \sum_{n=1}^{\infty} \frac{1}{n^{s}} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}}$
$$= \frac{1}{1-2^{-s}} \frac{1}{1-3^{-s}} \frac{1}{1-5^{-s}} \frac{1}{1-7^{-s}} \frac{1}{1-11^{-s}} \cdots$$

International Journal of Bifurcation and Chaos, Vol. 22, No. 9 (2012) 1250208 (18 pages) © World Scientific Publishing Company DOI: 10.1142/S0218127412502082

TIME-EVOLVING STATISTICS OF CHAOTIC ORBITS OF CONSERVATIVE MAPS IN THE CONTEXT OF THE CENTRAL LIMIT THEOREM

G. RUIZ

Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros s/n, 28040 Madrid, Spain guiomar.ruiz@upm.es

T. BOUNTIS

Department of Mathematics and Center for Research and Applications of Nonlinear Systems (CRANS), University of Patras, GR26500, Rion, Patras, Greece bountis@math.upatras.gr

C. TSALLIS

Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA tsallis@cbpf.br **CONSERVATIVE MC MILLAN MAP:**

$$x_{n+1} = y_n$$

$$y_{n+1} = -x_n + 2\mu \frac{y_n}{1 + y_n^2} + \varepsilon y_n$$

$\mu \neq 0 \Leftrightarrow$ nonlinear dynamics

G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)

 $(\mu, \varepsilon) = (1.6, 1.2)$

 $(\lambda_{\rm max} \approx 0.05)$

FIG. 10. Structure of phase space plot of Mc. Millan perturbed map for parameter values $\mu = 1.6$ and $\epsilon = 1.2$, starting form a randomly chosen initial condition in a square $(0, 10^{-6}) \times (0, 10^{-6})$, and for i = 1...N $(N = 2^{10}, 2^{13}, N^{16}, N^{18})$ iterates.

G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)

G. Ruiz, T. Bountis and C. T., Int J Bifurcat Chaos 22, 1250208 (2012)

CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

$$V(r) \sim -\frac{A}{r^{\alpha}}$$
 $(r \to \infty)$ $(A > 0, \alpha \ge 0)$

integrable if $\alpha / d > 1$ (short-ranged) non-integrable if $0 \le \alpha / d \le 1$ (long-ranged)

OZONE LAYER HOLE

10-50 Km above Earth

It absorbs 93-99% of the sun's high frequency ultraviolet light

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

PHYSICA A
000 31.000000 31.000000 31.000000 31.00000 31.00000
Therefore

Tsallis' q-triplet and the ozone layer

G.L. Ferri^{a,*}, M.F. Reynoso Savio^a, A. Plastino^b

^a Facultad de Ciencias Exactas, Universidad Nacional de La Pampa, Peru y Uruguay, 6300, Santa Rosa, La Pampa, Argentina ^b La Plata Physics Institute, Exact Sciences Fac., National University of La Plata, Argentina's National Research Council (CCT-CONICET), C.C. 727, (1900) La Plata, Argentina

ARTICLE INFO

Article history: Received 23 September 2009 Received in revised form 24 November 2009 Available online 22 December 2009

ABSTRACT

Tsallis' *q*-triplet [C. Tsallis, Dynamical scenario for nonextensive statistical mechanics, Physica A 340 (2004) 1–10] is the best empirical quantifier of nonextensivity. Here we study it with reference to an experimental time-series related to the daily depth-values of the stratospheric ozone layer. Pertinent data are expressed in Dobson units and range from 1978 to 2005. After the evaluation of the three associated Tsallis' indices one concludes that nonextensivity is clearly a characteristic of the system under scrutiny.

Fig. 1. Time-series Z_n . Daily values of the ozone layer over Buenos Aires city.

G.L. Ferri, M.F.R. Savio and A. Plastino, Physica A 389, 1829 (2010)

$$q_{stat} = 1.32 \pm 0.06$$

 $q_{sens} = -8.1 \pm 0.02$
 $q_{rel} = 1.89 \pm 0.02$

hence

 $q_{sens} < 1 < q_{stat} < q_{rel}$

G.L. Ferri, M.F.R. Savio and A. Plastino, Physica A 389, 1829 (2010)

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Tsallis statistics and magnetospheric self-organization

G.P. Pavlos^a, L.P. Karakatsanis^{a,*}, M.N. Xenakis^a, D. Sarafopoulos^a, E.G. Pavlos^b

^a Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece ^b Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

ARTICLE INFO

Article history: Received 24 October 2011 Received in revised form 9 January 2012 Available online 23 January 2012

Keywords:

Tsallis non-extensive statistics Non-equilibrium phase transition Intermittent turbulence Self-organized criticality Low dimensional chaos Magnetosphere Superstorm

ABSTRACT

In this study we use Tsallis non-extensive statistics for a new understanding the magnetospheric dynamics and the magnetospheric self-organization during quiet and intensive superstorm periods. The q_{sens} , q_{stat} , and q_{rel} indices set known as the Tsallis q-triplet was estimated during both quiet and strongly active periods, as well as the correlation dimensions and Lyapunov exponents spectrum for magnetospheric bulk plasma flows data. The results obtained by our analysis clearly indicate the magnetospheric phase transition process from a high-dimensional quiet SOC state to a low-dimensional global chaotic state when superstorm events are developed. During such a phase transition process the non-extensive statistical character of the magnetospheric plasma is strengthened as the values of the q-triplet indices changes obtaining higher values than their values during the quiet periods.

© 2012 Elsevier B.V. All rights reserved.

Table 1

Summarize parameter values of magnetospheric dynamics: From the top to the bottom we show: changes of the ranges $\Delta \alpha$, $\Delta(D_q)$ of the multifractal profile. The q-triplet (q_sen, q_stat, q_rel) of Tsallis. The values of the maximum Lyapunov exponent (Li), the next Lyapunov exponent and the correlation dimension (D).

	Vx quiet	Vx storm
$\Delta \alpha = \alpha_{\rm max} - \alpha_{\rm min}$	1.069 ± 0.011	1.644 ± 0.03
$\Delta(D_q)$	0.721	1.205
q_sen	0.1343 ± 0.0267	0.3237 ± 0.0608
q_stat	1.120 ± 0.092	2.370 ± 0.056
q_rel	1.150 ± 0.080	2.910 ± 0.080
L1	≈ 0	>0
Li, $(i > 2)$	<0	<0
D (cor. Dim.)	>8	<4-5

EPL, 88 (2009) 19001 doi: 10.1209/0295-5075/88/19001 October 2009

www.epljournal.org

Nonextensivity in the solar magnetic activity during the increasing phase of solar cycle 23

D. B. DE FREITAS^(a) and J. R. DE MEDEIROS^(b)

Departamento de Física, Universidade Federal do Rio Grande do Norte - 59072-970 Natal, RN, Brazil

$(\tau = 1 \text{ day})$

	<i>q</i> _{stat}	q _{sen}	<i>q</i> _{rel}
Solar Number [Sunspot Index Data Center]	1.31±0.07	-0.71±0.10	1
Magnetic Field [National Solar Observatory/Kitt Peak]	1.21 ± 0.06	-0.44 ± 0.07	1
Solar Total Irradiance [Virgo/SoHO]	1.54 ± 0.03	-0.52 ± 0.10	1

D.B. de Freitas and J.R. de Medeiros, Europhys Lett 88, 19001 (2010)

Physica A 391 (2012) 2154-2162

Tsallis' statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch

Gustavo L. Ferri^{a,*}, Alejandra Figliola^b, Osvaldo A. Rosso^{c,d}

^a Departamento de Física, Faultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina ^b Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, Juan María Gutiérrez 1150, Los Polvorines, Buenos Aires, Argentina

⁶ Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Campus Pampulha, 31270-901 Belo Horizonte - MG, Brazil

^d Chaos & Biology Group, Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

EPL, **102** (2013) 28006 doi: 10.1209/0295-5075/102/28006

www.epljournal.org

On the non-extensivity in Mars geological faults

FILIPPOS VALLIANATOS

Technological Educational Institute of Crete, Laboratory of Geophysics and Seismology - Crete, Greece, EU

received 14 January 2013; accepted in final form 1 April 2013 published online 3 May 2013

PACS 89.75.Da – Systems obeying scaling laws PACS 89.75.-k – Complex systems PACS 96.30.Gc – Mars

Abstract – A non-extensive statistical physics approach is tested for the first time in a planetary scale, for the fault length distribution in Mars estimated a non-extensive q-parameter equal to 1.277 for normal faults and 1.114 for thrust ones. The latter support the conclusion that the fault systems in Mars are subadditive ones in agreement with recent observations for faults in Earth and Valles Marineris extensional province, Mars. In addition, an analysis of the global Mars fault system as a mixed one, consisted of the normal and thrust subsystems with different q-parameters is presented, leading to q = 1.22.

Fig. 1: (Colour on-line) Global distribution of faults on Mars Western hemisphere (left) and eastern hemisphere (right), extracted from [22] and [42]. The extensional faults (in red) are mainly concentrated in the Western hemisphere, while the contractional faults, are located in both Mars hemispheres.

A&A 539, A158 (2012) DOI: 10.1051/0004-6361/201117767 © ESO 2012

Nonextensive distributions of asteroid rotation periods and diameters

A. S. Betzler¹ and E. P. Borges²

- ¹ Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, R. Aristides Novis 2, Federação, 40210-630 Salvador-BA, Brazil e-mail: betzler.ssa@ftc.br
- ² Instituto de Física and National Institute of Science and Technology for Complex Systems, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210-340 Salvador-BA, Brazil e-mail: ernesto@ufba.br

Received 25 July 2011 / Accepted 5 December 2011

ABSTRACT

Context. We investigate the distribution of asteroid rotation periods from different regions of the solar system and diameter distributions of near-Earth asteroids (NEAs).

Aims. We aim to verify if nonextensive statistics satisfactorily describes the data.

Methods. Light curve data were taken from the Planetary Database System (PDS) with Rel \geq 2. We also considered the taxonomic class and region of the solar system. Data of NEA were taken from the Minor Planet Center.

Results. The rotation periods of asteroids follow a q-Gaussian with q = 2.6 regardless of taxonomy, diameter, or region of the solar system of the object. The distribution of rotation periods is influenced by observational bias. The diameters of NEAs are described by a q-exponential with q = 1.3. According to this distribution, there are expected to be 994 ± 30 NEAs with diameters greater than 1 km.

Fig. 3. Log-log plot of the decreasing cumulative distribution of periods of 3567 asteroids (dots) with Rel ≥ 2 taken from the PDS (NASA) and a *q*-Gaussian distribution ($N_{\geq}(p) = M \exp_q(-\beta_q p^2)$) (solid line), with q = 2.6, $\beta_q = 0.025$ h⁻², M = 3567. The other curves are 663 S-complex asteroids (diamonds, blue online), 503 C-complex asteroids (squares, green online), 321 X-complex asteroids (triangles, magenta online). Inset shows the 3567 asteroids and the *q*-Gaussian in a linear-linear plot.

Fig. 4. Decreasing cumulative distribution of diameters of known NEAs in 2001 (1649 objects, green dots) and in 2010 (7078 objects, black dots). Solid lines are best fits of *q*-exponentials ($N_{\geq}(D) = M \exp_q(-\beta_q D)$). Blue line (2001): q = 1.3, $\beta_q = 1.5 \text{ km}^{-1}$, M = 1649, red line (2010): q = 1.3, $\beta_q = 3 \text{ km}^{-1}$, M = 7078. Normal exponentials (q = 1) are displayed in the main panel for comparison (dashed violet, with $\beta_1 = 1.5 \text{ km}^{-1}$, M = 1649, and dot-dashed magenta, with $\beta_1 = 3 \text{ km}^{-1}$, M = 7078).

LHC (Large Hadron Collider)

- CMS (Compact Muon Solenoid) detector
- ~ 2500 scientists/engineers from 183 institutions of 38 countries

Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in *pp* Collisions at $\sqrt{s} = 7$ TeV

V. Khachatryan et al.*

(CMS Collaboration)

(Received 18 May 2010; published 6 July 2010)

Measurement of neutral mesons in p + p collisions at $\sqrt{s} = 200$ GeV and scaling properties of hadron production

A. Adare,¹¹ S. Afanasiev,²⁵ C. Aidala,^{12,36} N. N. Ajitanand,⁵³ Y. Akiba,^{47,48} H. Al-Bataineh,⁴² J. Alexander,⁵³ K. Aoki,^{30,47} L. Aphecetche,⁵⁵ R. Armendariz,⁴² S. H. Aronson,⁶ J. Asai,^{47,48} E. T. Atomssa,³¹ R. Averbeck,⁵⁴ T. C. Awes,⁴³ B. Azmoun,⁶ V. Babintsev,²¹ M. Bai,⁵ G. Baksay,¹⁷ L. Baksay,¹⁷ A. Baldisseri,¹⁴ K. N. Barish,⁷ P. D. Barnes,³³ B. Bassalleck,⁴¹ A. T. Basye,¹ S. Bathe,⁷ S. Batsouli,⁴³ V. Baublis,⁴⁶ C. Baumann,³⁷ A. Bazilevsky,⁶ S. Belikov,^{6,*} R. Bennett,⁵⁴ A. Berdnikov,⁵⁰ Y. Berdnikov,⁵⁰ A. A. Bickley,¹¹ J. G. Boissevain,³³ H. Borel,¹⁴ K. Boyle,⁵⁴ M. L. Brooks,³³ H. Buesching,⁶ V. Bumazhnov,²¹ G. Bunce,^{6,48} S. Butsyk,^{33,54} C. M. Camacho,³³ S. Campbell,⁵⁴ B. S. Chang,⁶² W. C. Chang,² J.-L. Charvet,¹⁴ S. Chernichenko,²¹ J. Chiba,²⁶ C. Y. Chi,¹² M. Chiu,²² I. J. Choi,⁶² R. K. Choudhury,⁴ T. Chujo,^{58,59} P. Chung,⁵³ A. Churyn,²¹ V. Cianciolo,⁴³ Z. Citron,⁵⁴ C. R. Cleven,¹⁹ B. A. Cole,¹² M. P. Comets,⁴⁴ P. Constantin,³³ M. Csanád,¹⁶ T. Csörgő,²⁷ T. Dahms,⁵⁴ S. Dairaku,^{30,47} K. Das,¹⁸ G. David,⁶ M. B. Deaton,¹ K. Dehmelt,¹⁷ H. Delagrange,⁵⁵ A. Denisov,²¹ D. d'Enterria,^{12,31} A. Deshpande,^{48,54} E. J. Desmond,⁶ O. Dietzsch,⁵¹ A. Dion,⁵⁴ M. Donadelli,⁵¹ O. Drapier,³¹ A. Drees,⁵⁴ K. A. Drees,⁵ A. K. Dubey,⁶¹ A. Durum,²¹ D. Dutta,⁴ V. Dzhordzhadze,⁷ Y. V. Efremenko,⁴³ J. Egdemir,⁵⁴ F. Ellinghaus,¹¹ W. S. Emam,⁷ T. Engelmore,¹² A. Enokizono,³² H. En'yo,^{47,48} S. Esumi,⁵⁸ K. O. Eyser,⁷ B. Fadem,³⁸ D. E. Fields,^{41,48} M. Finger, Jr.,^{8,25} M. Finger,^{8,25} F. Fleuret,³¹ S. L. Fokin,²⁹ Z. Fraenkel,^{61,*} J. E. Frantz,⁵⁴ A. Franz,⁶ A. D. Frawley,¹⁸ K. Fujiwara,⁴⁷ Y. Fukao,^{30,47} T. Fusayasu,⁴⁰ S. Gadrat,³⁴ I. Garishvili,⁵⁶ A. Glenn,¹¹ H. Gong,⁵⁴ M. Gonin,³¹ J. Gosset,¹⁴ Y. Goto,^{47,48} R. Granier de Cassagnac,³¹ N. Grau,^{12,24} S. V. Greene,⁵⁹ M. Grosse Perdekamp,^{22,48} T. Gunji,¹⁰ H. -Å. Gustafsson,^{35,*} T. Hachiya,²⁰ A. Hadj Henni,⁵⁵ C. Haegemann,⁴¹ J. S. Haggerty,⁶ H. Hamagaki,¹⁰ R. Han,⁴⁵ H. Harada,²⁰ E. P. Hartouni,³² K. Haruna,²⁰ E. Haslum,³⁵ R. Hayano,¹⁰ M. Heffner,³² T. K. Hemmick,⁵⁴ T. Hester,⁷ X. He,¹⁹ H. Hiejima,²² J. C. Hill,²⁴ R. Hobbs,⁴¹ M. Hohlmann,¹⁷ W. Holzmann, ⁵³ K. Homma, ²⁰ B. Hong, ²⁸ T. Horaguchi, ^{10,47,57} D. Hornback, ⁵⁶ S. Huang, ⁵⁹ T. Ichihara, ^{47,48} R. Ichimiya, ⁴⁷ H. Iinuma,^{30,47} Y. Ikeda,⁵⁸ K. Imai,^{30,47} J. Imrek,¹⁵ M. Inaba,⁵⁸ Y. Inoue,^{49,47} D. Isenhower,¹ L. Isenhower,¹ M. Ishihara,⁴⁷ T. Isobe,¹⁰ M. Issah,⁵³ A. Isupov,²⁵ D. Ivanischev,⁴⁶ B. V. Jacak,^{54,†} J. Jia,¹² J. Jin,¹² O. Jinnouchi,⁴⁸ B. M. Johnson,⁶ K. S. Joo,³⁹ D. Jouan,⁴⁴ F. Kajihara,¹⁰ S. Kametani,^{10,47,60} N. Kamihara,^{47,48} J. Kamin,⁵⁴ M. Kaneta,⁴⁸ J. H. Kang,⁶² H. Kanou,^{47,57} J. Kapustinsky,³³ D. Kawall,^{36,48} A. V. Kazantsev,²⁹ T. Kempel,²⁴ A. Khanzadeev,⁴⁶ K. M. Kijima,²⁰ J. Kikuchi,⁶⁰ B. I. Kim,²⁸ D. H. Kim,³⁹ D. J. Kim,⁶² E. Kim,⁵² S. H. Kim,⁶² E. Kinney,¹¹ K. Kiriluk,¹¹ Á. Kiss,¹⁶ E. Kistenev,⁶ A. Kiyomichi,⁴⁷ J. Klay,³² C. Klein-Boesing,³⁷ L. Kochenda,⁴⁶ V. Kochetkov,²¹ B. Komkov,⁴⁶ M. Konno,⁵⁸ J. Koster,²² D. Kotchetkov,⁷ A. Kozlov,⁶¹ A. Král,¹³ A. Kravitz,¹² J. Kubart,^{8,23} G. J. Kunde,³³ N. Kurihara,¹⁰

FIG. 13. The p_T spectra of <u>various hadrons</u> measured by PHENIX fitted to the power law fit (dashed lines) and Tsallis fit (solid lines). See text for more details.

$q \simeq 1.10$

PHYSICAL REVIEW D 87, 114007 (2013)

Tsallis fits to p_T spectra and multiple hard scattering in pp collisions at the LHC

Cheuk-Yin Wong

Oak Ridge National Laboratory, Physics Division, Oak Ridge, Tennessee 37831, USA

Grzegorz Wilk

National Centre for Nuclear Research, Warsaw 00-681, Poland (Received 12 May 2013; published 5 June 2013)

Phenomenological Tsallis fits to the CMS, ATLAS, and ALICE transverse momentum spectra of hadrons for pp collisions at LHC were recently found to extend over a large range of the transverse momentum. We investigate whether the few degrees of freedom in the Tsallis parametrization may arise from the relativistic parton-parton hard-scattering and related processes. The effects of the multiple hard-scattering and parton showering processes on the power law are discussed. We find empirically that whereas the transverse spectra of both hadrons and jets exhibit power-law behavior of $1/p_T^n$ at high p_T , the power indices n for hadrons are systematically greater than those for jets, for which $n \sim 4-5$.

Black holes and thermodynamics*

S. W. Hawking[†]

California Institute of Technology, Pasadena, California 91125 and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England (Received 30 June 1975)

A black hole of given mass, angular momentum, and chargé can have a large number of different unobservable internal configurations which reflect the possible different initial configurations of the matter which collapsed to produce the hole. The logarithm of this number can be regarded as the entropy of the black hole and is a measure of the amount of information about the initial state which was lost in the formation of the black hole. If one makes the hypothesis that the entropy is finite, one can deduce that the black holes must emit thermal radiation at some nonzero temperature. Conversely, the recently derived quantum-mechanical result that black holes do emit thermal radiation at temperature $\kappa h/2\pi kc$, where κ is the surface gravity, enables one to prove that the entropy is finite and is equal to $c^3A/4Gh$, where A is the surface area of the event horizon or boundary of the black hole. Because black holes have negative specific heat, they cannot be in stable thermal equilibrium except when the additional energy available is less than 1/4 the mass of the black hole. This means that the standard statistical-mechanical canonical ensemble cannot be applied when gravitational interactions are important. Black holes behave in a completely random and timesymmetric way and are indistinguishable, for an external observer, from white holes. The irreversibility that appears in the classical limit is merely a statistical effect. NEWS AND VIEWS

When entropy does not seem extensive

Earlier speculations about the entropy of black holes has prompted an ingenious calculation suggesting that entropy may (in special circumstances) be the same inside and outside an arbitrary boundary.

Entrance who knows about entrupy knows that it is an extensive property, like mass or mitalpy. That, of course, is why the entropy of nme substance will be quoted as so much per gram, or mole. If you then take two guns, or two moles, of the same material under the same conditions, the entropy will be twice as much. And there should be no confusion about the units; the simple Carnot definition of a change of entropy in a revers-He process is the heat transfer divided by the absolute temperature, so that the units of mittigy are simply those of energy divided by temperature, joules per degree (kelvin) in the SI system. The definitions of the Giths and Helmholtz free energies would be dimensionally discordant for that resse were it not that entropy (S) always turns up multiplied by temperature T. So much will readily be agreed.

Of course, there is more than that to tic, i entropy, which is also a measure of disorder. Zite Everybody also agrees on that. But how is for damler measured? By the number of ways spp in which the constituents of some material Une iden (the atoms and molecules) can be rearranged without changing its properties and without coni mergetic consequences. But now there comes ines a seag.

Like any extensive property, the combird entropy of two separate chunks of not rath miterial should be the now of the two entrupies, but the number of rearrangements of not, the combined system must be the product of inte the numbers of ways in which the two parts The sparately can be rearranged. How to reconentri cle that with extensivity? By supposing may minipy is proportional not to the number of excl narrangements (technically called 'comouts Bec piccions'), but with the logarithm thereof. And because entropy decreases as disorder atin nomises, the constant of proportionality ing must be a negative (real) number. the

whe From that it follows that $S = S_{-}K\log N_{+}$ where K is a positive constant with the tion dimensions of entropy, N is a number (withset dimensions) measuring disorder and S. to b is an arbitrary constant entropy. All that is the simply a precis of the standard introductory dapter in statistical mechanics textbooks, nost of which go on to show how to calcu-The lat the properties of assemblages of, say, argu dutomic molecules from a knowledge of their their individual behaviour. Because the that number of complexions of a particular state of an assemblage is invariably a function of the number (#) of molecules it contains, sually in the form of n', because n is anally large and because log(s!) can then he approximated by aloga, the extensive MILRE - VOL 365 - 9 SEPTEMBER 1993

property of entrupy then follows simply from the appearance of the leading factor w: entropy is proportional to the number of molecules.

That is what the textbooks say. It also makes sense of what is known of the thermodynamics of the real world. In a sample of a diatomic gas, for example, there are vibrations (one) and rotations (two) as well as three rectilinear degrees of freedom. But the problem is to tell how the energy available is distributed among the different degrees of freedom. The arithmetic simplifies marvellously because (in this case) each molecule and each of its degrees of freedom is independent. The best measure of disorder works out at $N = \mathbb{Z}^n$, where n is the number of molecules, and where Z, which must be a fund

inal

inte

be (

pub

ation

well suited to the discussion of systems in which one part (say the black hole) is singled out for attention while the remainder (the Universe outside it) is dealt with in less detail, perhaps because some averaging process is appropriate, or because the whole problem may not be calculable at all. (In Dirac's notation, the density matrix corresponding to some state of the whole Universe would be represented as [1><1], where "I" is simply the name for a particular state of the Universe.) What matters, where entropy is concerned, is that the density matrix, like all matrices, has eigenvalues from which the entropy can be calculated.

So imagine that the Universe is partitioned into two parts by means of a closed boundary of some kind and filled with a

Tackled by Jacob D. Bekenstein Stephen W. Hawking Gary W. Gibbons Gerard 't Hooft Leonard Susskind Michael J. Duff Juan M Maldacena Thanu Padmanabhan Robert M. Wald and many others

When entropy does not seem extensive John Maddox, Nature 365, 103 (1993)

Everybody who knows about entropy knows that it is an extensive property, like mass or enthalpy. [...] Of course, there is more than that to entropy, which is also a measure of disorder. Everybody also agrees on that. But how is disorder measured? [...] So why is the entropy of a black hole proportional to the square of its radius, and not to the cube of it? To its surface area rather than to its volume?

A bit of quantum mechanics goes into the argument as well, notably the notion of the density matrix - an artificially constructed operator (on quantum states) that is

dealt with explicitly, as other entropy calculations are made. And that could be exceedingly important.

> John Maddox 103

PHYSICAL REVIEW D 73, 121701(R) (2006)

How robust is the entanglement entropy-area relation?

Saurya Das^{1,*} and S. Shankaranarayanan^{2,†}

¹Department of Physics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada ²HEP Group, International Centre for Theoretical Physics, Strada costiera 11, 34100 Trieste, Italy (Received 30 November 2005; revised manuscript received 24 May 2006; published 28 June 2006)

We revisit the problem of finding the entanglement entropy of a scalar field on a lattice by tracing over its degrees of freedom inside a sphere. It is known that this entropy satisfies the area law—entropy proportional to the area of the sphere—when the field is assumed to be in its ground state. We show that the area law continues to hold when the scalar field degrees of freedom are in generic coherent states and a class of squeezed states. However, when excited states are considered, the entropy scales as a lower power of the area. This suggests that, for large horizons, the ground state entropy dominates, whereas entropy due to excited states gives power-law corrections. We discuss possible implications of this result to black hole entropy.

The area (as opposed to volume) proportionality of BH entropy has been an intriguing issue for decades.

PHYSICAL REVIEW D 83, 064034 (2011)

Ideal gas in a strong gravitational field: Area dependence of entropy

Sanved Kolekar* and T. Padmanabhan[†]

IUCAA, Pune University Campus, Ganeshkhind, Pune 411007, India (Received 24 January 2011; published 24 March 2011)

We study the thermodynamic parameters like entropy, energy etc. of a box of gas made up of indistinguishable particles when the box is kept in various static background spacetimes having a horizon. We compute the thermodynamic variables using both statistical mechanics as well as by solving the hydrodynamical equations for the system. When the box is far away from the horizon, the entropy of the gas depends on the volume of the box except for small corrections due to background geometry. As the box is moved closer to the horizon with one (leading) edge of the box at about Planck length (L_p) away from the horizon, the entropy shows an area dependence rather than a volume dependence. More precisely, it depends on a small volume $A_{\perp}L_p/2$ of the box, up to an order $\mathcal{O}(L_p/K)^2$ where A_{\perp} is the transverse area of the box and K is the (proper) longitudinal size of the box related to the distance between leading and trailing edge in the vertical direction (i.e. in the direction of the gravitational field). Thus the contribution to the entropy comes from only a fraction $\mathcal{O}(L_p/K)$ of the matter degrees of freedom and the rest are suppressed when the box approaches the horizon. Near the horizon all the thermodynamical quantities behave as though the box of gas has a volume $A_{\perp}L_{p}/2$ and is kept in a Minkowski spacetime. These effects are: (i) purely kinematic in their origin and are independent of the spacetime curvature (in the sense that the Rindler approximation of the metric near the horizon can reproduce the results) and (ii) observer dependent. When the equilibrium temperature of the gas is taken to be equal to the horizon temperature, we get the familiar A_{\perp}/L_p^2 dependence in the expression for entropy. All these results hold in a D + 1 dimensional substically symmetric susceptime. The analysis based on methods of statistical

mechanics and the one lead to the same result

Thus the extensive property of entropy no longer holds and one can check that it does not hold even in the weak field limit discussed above when $L \gg \lambda$ that is, when gravitational effects subdue the thermal effects along the direction of the gravitational field. SINCE THE PIONEERING BEKENSTEIN-HAWKING RESULTS, PHYSICALLY MEANINGFUL EVIDENCE HAS ACCUMULATED (e.g., HOLOGRAPHIC PRINCIPLE) WHICH MANDATES THAT

$$\ln W_{black \ hole} \propto AREA$$

THIS IS PERFECTLY ADMISSIBLE AND MOST PROBABLY CORRECT.

HOWEVER,

IS THIS QUANTITY THE THERMODYNAMICAL ENTROPY???

Eur. Phys. J. C (2013) 73:2487 DOI 10.1140/epjc/s10052-013-2487-6

Regular Article - Theoretical Physics

Black hole thermodynamical entropy

Constantino Tsallis^{1,2,a}, Leonardo J.L. Cirto^{1,b}

¹Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

²Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

stead of being proportional to L^d ($d \ge 1$). These results vi- thermodynamic puzzle.

Abstract As early as 1902, Gibbs pointed out that systems olate the extensivity of the thermodynamical entropy of a whose partition function diverges, e.g. gravitation, lie out- d-dimensional system. This thermodynamical inconsistency side the validity of the Boltzmann-Gibbs (BG) theory. Con- disappears if we realize that the thermodynamical entropy of sistently, since the pioneering Bekenstein-Hawking results, such nonstandard systems is not to be identified with the BG physically meaningful evidence (e.g., the holographic prin- additive entropy but with appropriately generalized nonadciple) has accumulated that the BG entropy S_{BG} of a (3 + 1) ditive entropies. Indeed, the celebrated usefulness of the BG black hole is proportional to its area L^2 (L being a charac- entropy is founded on hypothesis such as relatively weak teristic linear length), and not to its volume L^3 . Similarly probabilistic correlations (and their connections to ergodicit exists the area law, so named because, for a wide class ity, which by no means can be assumed as a general rule of of strongly quantum-entangled d-dimensional systems, SBG nature). Here we introduce a generalized entropy which, for is proportional to $\ln L$ if d = 1, and to L^{d-1} if d > 1, in- the Schwarzschild black hole and the area law, can solve the Various arguments (phenomenological, holographic principle, string theory, area law, etc) yield

$$S_{BG}(L) \equiv k_B \ln W(L) \propto L^{d-1} \ (d > 1)$$

hence

$$W(L) \propto \Phi(L) v^{L^{d-1}} \left(\text{with } \lim_{L \to \infty} \frac{\ln \Phi(L)}{L^{d-1}} = 0; \text{ e.g., } \Phi(L) \propto L^{\rho} \right)$$

hence, for d > 1, the entropy which is extensive is S_{δ} with $\delta = \frac{d}{d-1}$

i.e.,
$$S_{\delta=d/(d-1)}(L) = k_B \sum_{i=1}^{W(L)} p_i \left(\ln \frac{1}{p_i} \right)^{\frac{d}{d-1}} \propto L^d \quad (d > 1)$$

Consequently $S_{\delta=3/2}^{black\ hole}(L) = k_B \sum_{i=1}^{W(N)} p_i \left(\ln \frac{1}{p_i} \right)^{\frac{3}{2}} \propto L^3 \quad !!!$

C.T. and L.J.L. Cirto, Eur. Phys. J. C 73, 2487 (2013)

SYSTEMS	ENTROPY S_{BG}	ENTROPY S_q	ENTROPY S_{δ}
W(N)		$(q \neq 1)$	$(\delta \neq 1)$
	(ADDITIVE)	(NONADDITIVE)	(NONADDITIVE)
$\sim \mu^N$	EVTENCIVE	NONEVTENSIVE	NONEVTENSU/E
$(\mu > 1)$	EATENSIVE	INDINEATEINSIVE	NONEATENSIVE
$\sim N^{\rho}$			
$(\rho > 0)$	NONEXTENSIVE	EATEINSIVE	NONEXTENSIVE
$\sim v^{N^{\gamma}}$			
(v > 1;	NONEXTENSIVE	NONEXTENSIVE	EXTENSIVE
$0 < \gamma < 1$			

Nonlinear Relativistic and Quantum Equations with a Common Type of Solution

F.D. Nobre,^{1,*} M.A. Rego-Monteiro,¹ and C. Tsallis^{1,2}

¹Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro–RJ Brazil
²Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA (Received 25 October 2010; published 4 April 2011)

Generalizations of the three main equations of quantum physics, namely, the Schrödinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, are considered in such a way that the standard linear equations are recovered in the limit $q \rightarrow 1$. Interestingly, these equations present a common, solitonlike, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In all cases, the well-known Einstein energy-momentum relation is preserved for arbitrary values of q.

See also:

R.N. Costa Filho, M.P. Almeida, G.A. Farias and J.S. Andrade, PRA 84, 050102(R) (2011)

- F.D. Nobre, M.A. Rego-Monteiro and C. T., EPL 97, 41001 (2012)
- S.H. Mazharimousavi, Phys Rev A 85, 034102 (2012)
- A.R. Plastino and C. T., J Math Phys. 54, 041505 (2013)
- R.N. Costa Filho, G. Alencar, B.S. Skagerstam and J.S. Andrade, EPL **101**, 10009 (2013)
- M.A. Rego-Monteiro and F.D. Nobre, Phys Rev A 88, 032105 (2013)
- B.G. Costa and E.P. Borges, preprint (2013)

q – generalized Schroedinger equation

(quantum non-relativistic spinless free particle)

$$i\hbar\frac{\partial}{\partial t}\left[\frac{\Phi(\vec{x},t)}{\Phi_0}\right] = -\frac{1}{2-q}\frac{\hbar^2}{2m}\nabla^2\left[\frac{\Phi(\vec{x},t)}{\Phi_0}\right]^{2-q} \quad (q\in R)$$

Its exact solution is given by

$$\Phi(\vec{x},t) = \Phi_0 e_q^{i(\vec{p} \cdot \vec{x} - Et)/\hbar} = \Phi_0 e_q^{i(\vec{k} \cdot \vec{x} - \omega t)}$$

$$E = \frac{p^2}{2m} \text{ (Newtonian relation!)}$$
with
$$E = \hbar \omega \text{ (Planck relation!)}$$

$$p = \hbar k \text{ (de Broglie relation!)}$$

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett **106**, 140601 (2011)

q-generalized Klein-Gordon equation:

(quantum relativistic spinless free particle: e.g., mesons π)

$$\nabla^2 \Phi(\vec{x}, t) = \frac{1}{c^2} \frac{\partial^2 \Phi(\vec{x}, t)}{\partial t^2} + q \frac{m^2 c^2}{\hbar^2} \Phi(\vec{x}, t) \left[\frac{\Phi(\vec{x}, t)}{\Phi_0} \right]^{2(q-1)} \quad (q \in R)$$

Its exact solution is given by

$$\Phi(\vec{x},t) = \Phi_0 e_q^{i(\vec{p} \cdot \vec{x} - Et)/\hbar} = \Phi_0 e_q^{i(\vec{k} \cdot \vec{x} - \omega t)}$$

with

 $E^2 = p^2 c^2 + m^2 c^4$ ($\forall q$) (Einstein relation!)

Particular case: $m = 0 \implies q$ -plane waves

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett **106**, 140601 (2011)

q-generalized Dirac equation:

(quantum relativistic spin 1/2 matter and anti-matter free particles: e.g., electron and positron)

$$i\hbar \frac{\partial \Phi(\vec{x},t)}{\partial t} + i\hbar c(\vec{\alpha}.\vec{\nabla}) \Phi(\vec{x},t) = \beta m c^2 A^{(q)}(\vec{x},t) \Phi(\vec{x},t) \quad (q \in R)$$

with

$$\vec{\alpha} \equiv \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix}; \quad \beta \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (4 \times 4 \text{ matrices})$$
$$\vec{A}_{ij}^{(q)}(\vec{x}, t) \equiv \delta_{ij} \begin{bmatrix} \Phi_j(\vec{x}, t) \\ a_j \end{bmatrix}^{q-1} \quad \left(A_{ij}^{(1)}(\vec{x}, t) = \delta_{ij}\right) \quad (4 \times 4 \text{ matrix})$$

where $\{a_j\}$ are complex constants. F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett **106**, 140601 (2011) Its exact solution is given by

$$\Phi(\vec{x},t) = \begin{pmatrix} \Phi_1(\vec{x},t) \\ \Phi_2(\vec{x},t) \\ \Phi_3(\vec{x},t) \\ \Phi_4(\vec{x},t) \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} e^{i(\vec{p} \cdot \vec{x} - Et)/\hbar} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} e^{i(\vec{k} \cdot \vec{x} - \omega t)}$$
with $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$ being the same $\forall q$

hence

 $E^2 = p^2 c^2 + m^2 c^4$ ($q \in R$) (Einstein relation!)

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett **106**, 140601 (2011)

BOOKS AND SPECIAL ISSUES ON NONEXTENSIVE STATISTICAL MECHANICS

Full bibliography (regularly updated): http://tsallis.cat.cbpf.br/biblio.htm

4256 articles by 6077 scientists from 75 countries

[15 September 2013]

CONTRIBUTORS		(4256 MANUSCRIPTS)		[Updated 15 September 2013]				
USA	1376	PORTUGAL	44	CYPRUS	11	PERU	3	
BRAZIL	598	TAIWAN	43	VENEZUELA	11	KAZAKSTAN	2	
ITALY	435	UKRAINE	41	PUERTO RICO	10	MOLDOVA	2	
CHINA	391	AUSTRALIA	40	SERBIA	10	PHILIPINES	2	
FRANCE	324	MEXICO	40	SWEDEN	10	UNITED ARAB		
GERMANY	299	CZECK	37	NORWAY	9	EMIRATES	2	
JAPAN	298	ISRAEL	35	SLOVAK	8	ECUADOR	1	
UNIT. KINGDOM 213 FINLAND		FINLAND	24	CHILE	7	GEORGIA	1	
RUSSIA	212	BELGIUM	22	ESTONIA	7	INDONESIA	1	
SPAIN	204	NETHERLANDS	20	IRELAND	7	JORDAN	1	
INDIA	197	BULGARIA	19	NEW ZEALAND	7	QATAR	1	
SWITZERLAND	189	CROATIA	16	SAUDI ARABIA	7	SRI LANKA	1	
TURKEY	102	PAKISTAN	16	SINGAPORE	7	UZBEKISTAN	1	
ARGENTINA	101	ALGERIA	14	BANGLADESH	5			
GREECE	96	COLOMBIA	14	ARMENIA	4			
POLAND	90	EGYPT	14	BOLIVIA	4			
SOUTH KOREA	85	SOUTH AFRICA	13	MALAYSIA	4			
HUNGARY	69	CUBA	12	SLOVENIA	4			
CANADA	66	DENMARK	12	THAILAND	4			
AUSTRIA	56	LITHUANIA	12	URUGUAY	4			
IRAN	56	ROMENIA	12	BELARUS	3			

75 COUNTRIES 6077 SCIENTISTS

Introduction to Nonextensive Statistical Mechanics

APPROACHING A COMPLEX WORLD

Constantino Tsallis

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

The large deviation approach to statistical mechanics

Hugo Touchette*

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK

ARTICLE INFO

Article history: Accepted 29 May 2009 Available online 6 June 2009 editor: 1. Procaccia

PACS: 05.20.-y

65.40.Gr 02.50.-r 05.40.-a

ABSTRACT

The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in random systems. These probabilities are important in many fields of study, including statistics, finance, and engineering, as they often yield valuable information about the large fluctuations of a random system around its most probable state or trajectory. In the context of equilibrium statistical mechanics, the theory of large deviations provides exponential-order estimates of probabilities that refine and generalize Einstein's theory of fluctuations. This review explores this and other connections between large deviation theory and statistical mechanics, in an effort to show that the mathematical language of statistical mechanics is the language of large deviation theory. The first part of the review presents the basics of large deviation theory, and works out many of its classical applications related to sums of random variables and Markov processes. The second part goes through many problems and results of statistical mechanics, and shows how these can be formulated and derived within the context of large deviation theory. The problems and results treated cover a wide range of physical systems, including equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems, as well as multifractals, disordered systems, and chaotic systems. This review also covers

UVSICS REPORTS

G. Ruiz and C. T., Phys Lett A 376, 2451 (2012)

Physics Letters A 376 (2012) 2451-2454

Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Guiomar Ruiz^{a,b,*}, Constantino Tsallis^{a,c}

^a Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

^b Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros s.n., 28040 Madrid, Spain

^c Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

ARTICLE INFO

Article history: Received 12 March 2012 Received in revised form 20 June 2012 Accepted 22 June 2012 Available online 28 June 2012 Communicated by C.R. Doering

ABSTRACT

A large-deviation connection of statistical mechanics is provided by N independent binary variables, the $(N \to \infty)$ limit yielding Gaussian distributions. The probability of $n \neq N/2$ out of N throws is governed by e^{-Nr} , r related to the entropy. Large deviations for a strong correlated model characterized by indices (Q, γ) are studied, the $(N \to \infty)$ limit yielding Q-Gaussians $(Q \to 1 \text{ recovers a Gaussian})$. Its large deviations are governed by $e_q^{-Nr_q}$ ($\propto 1/N^{1/(q-1)}$, q > 1), $q = (Q - 1)/(\gamma[3 - Q]) + 1$. This illustration opens the door towards a large-deviation foundation of nonextensive statistical mechanics.

Comment

Reply to Comment on "Towards a large deviation theory for strongly correlated systems"

Guiomar Ruiz^{a,b,*}, Constantino Tsallis^{a,c}

^a Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ, Brazil

^b Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros s.n., 28040 Madrid, Spain

^c Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

ARTICLE INFO

Article history: Received 22 November 2012 Accepted 2 December 2012 Available online 14 December 2012 Communicated by C.R. Doering

Keywords: Probability theory Statistical mechanics Entropy

ABSTRACT

The computational study commented by Touchette opens the door to a desirable generalization of standard large deviation theory for special, though ubiquitous, correlations. We focus on three interrelated aspects: (i) numerical results strongly suggest that the standard exponential probability law is asymptotically replaced by a power-law dominant term; (ii) a subdominant term appears to reinforce the thermodynamically extensive entropic nature of *q*-generalized rate function; (iii) the correlations we discussed, correspond to *Q*-Gaussian distributions, differing from Lévy's, except in the case of Cauchy–Lorentz distributions. Touchette has agreeably discussed point (i), but, unfortunately, points (ii) and (iii) escaped to his analysis. Claiming the absence of connection with *q*-exponentials is unjustified.

© 2012 Elsevier B.V. All rights reserved.

G. Ruiz and C. T., Phys Lett A 376, 2451 (2012)

G. Ruiz and C. T., Phys Lett A 377, 491 (2013)

G. Ruiz and C. T., Phys Lett A 377, 491 (2013)

BOLTZMANN-GIBBS STATISTICAL MECHANICS (q = 1)

- Additive entropy $\left[S_{BG}(A+B) = S_{BG}(A) + S_{BG}(B)\right]$
- Linear Fokker-Planck equation
- Linear Fourier transform

$$\frac{dy}{dx} = ay \Longrightarrow y = e^{ax}$$

NONEXTENSIVE STATISTICAL MECHANICS ($q \neq 1$)

Nonadditive entropy
$$\left[\frac{S_{BG}(A+B)}{k} = \frac{S_{BG}(A)}{k} + \frac{S_{BG}(B)}{k} + (1-q)\frac{S_{BG}(A)}{k}\frac{S_{BG}(B)}{k}\right]$$

Nonlinear Fokker-Planck equation Nonlinear *q*-Fourier transform

$$\frac{dy}{dx} = ay^q \Longrightarrow y = \left[1 + (1 - q)ax\right]^{\frac{1}{1 - q}} \equiv e_q^{ax}$$

BOLTZMANN-GIBBS STATISTICAL MECHANICS

(Maxwell 1860, Boltzmann 1872, Gibbs \leq 1902)

Entropy

Internal energy

Equilibrium distribution

Paradigmatic differential equation

$$S_{BG} = -k \sum_{i=1}^{W} p_i \ln p_i$$

$$U_{BG} = \sum_{i=1}^{W} p_i E_i$$

$$p_i = e^{-\beta E_i} / Z_{BG} \left(Z_{BG} \equiv \sum_{j=1}^{W} e^{-\beta E_j} \right)$$

$$\frac{dy}{dx} = ay$$

$$y(0) = 1$$

$$\Rightarrow y = e^{ax}$$

	X	а	y(x)
Equilibrium distribution	E_{i}	-eta	$Z p(E_i)$
Sensitivity to initial conditions	t	λ	$\xi \equiv \lim_{\Delta x(0) \to 0} \frac{\Delta x(t)}{\Delta x(0)} = e^{\lambda t}$
Typical relaxation of observable O	t	$-1/\tau$	$\Omega \equiv \frac{O(t) - O(\infty)}{O(0) - O(\infty)} = e^{-t/\tau}$

 $S_{BG} \rightarrow$ additive, concave, Lesche-stable, finite entropy production

NONEXTENSIVE STATISTICAL MECHANICS

(C. T. 1988, E.M.F. Curado and C. T. 1991, C. T., R.S. Mendes and A.R. Plastino 1998)

Entropy	$S_q = k \left(1 - \sum_{i=1}^{W} p_i^q \right) / (q-1)$					
Internal energy	$U_q = \sum_{i=1}^{W} p_i^q E_i / \sum_{i=1}^{W} p_j^q$					
Stationary state distribution	$p_{i} = e_{q}^{i=1} \frac{\left(E_{i} - U_{q}\right)^{j=1}}{Z_{q}} \left(Z_{q} \equiv \sum_{j=1}^{W} e_{q}^{-\beta_{q}(E_{j} - U_{q})} \right)$					
Paradigmatic differential equation	$\frac{\frac{dy}{dx} = a y^{q}}{y(0) = 1} \Rightarrow \qquad y = e_{q}^{ax} \equiv [1 + (1 - q)ax]^{\frac{1}{1 - q}}$					
	x	а	\mathcal{Y}	(x)		
Stationary state distribution	E_i	$-oldsymbol{eta}_{q_{stat}}$	$Z_{q_{stat}} p(E_i)$	(typically $q_{stat} \ge 1$)		
Sensitivity to initial conditions	t	$\lambda_{q_{sen}}$	$\boldsymbol{\xi} = \boldsymbol{e}_{q_{sen}}^{\lambda_{q_{sen}} t}$	(typically $q_{sen} \leq 1$)		
Typical relaxation of observable O	t	-1 / $ au_{q_{rel}}$	$\Omega = e_{q_{rel}}^{-t/\tau_{q_{rel}}}$	(typically $q_{rel} \ge 1$)		

 $S_q \rightarrow$ nonadditive, concave, Lesche-stable, finite entropy production C. T., Physica A **340**,1 (2004)

Prediction of the *q* - triplet: C. T., Physica A 340,1 (2004)

Fig. 2. The triangle of the basic values of q, namely those associated with sensitivity to the initial conditions, relaxation and stationary state. For the most relevant situations we expect $q_{sen} \leq 1$, $q_{rel} \geq 1$ and $q_{stat} \geq 1$. These indices are presumably inter-related since they all descend from the particular dynamical exploration that the system does of its full phase space. For example, for long-range Hamiltonian systems characterized by the decay exponent α and the dimension d, it could be that q_{stat} decreases from a value above unity (e.g., 2 or $\frac{3}{2}$) to unity when α/d increases from zero to unity. For such systems one expects relations like the (particularly simple) $q_{stat} = q_{rel} = 2 - q_{sen}$ or similar ones. In any case, it is clear that, for $\alpha/d > 1$ (i.e., when BG statistics is known to be the correct one), one has $q_{stat} = q_{rel} = q_{sen} = 1$. All the weakly chaotic systems focused on here are expected to have well defined values for q_{sen} and q_{rel} , but only those associated with a Hamiltonian are expected to *also* have a well defined value for q_{stat} .

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Physica A 356 (2005) 375-384

www.elsevier.com/locate/physa

Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere

L.F. Burlaga*, A.F. -Viñas

Laboratory for Solar and Space Physics, Code 612.2, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

> Received 10 June 2005 Available online 11 July 2005

Bow Shock? Voyager 1 Lennination Sho Hellosheath Voyager 2

Heliosphere

Heliopause

Sun

SOLAR WIND: Magnetic Field Strength

L.F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center; Physica A 356, 375 (2005)

[Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU; daily averages]

Asymptotically scale-invariant occupancy of phase space makes the entropy S_q extensive

Constantino Tsallis*^{††}, Murray Gell-Mann*[‡], and Yuzuru Sato*

*Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; and [†]Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil

Contributed by Murray Gell-Mann, July 25, 2005

PNAS

Phase space can be constructed for N equal and distinguishable subsystems that could be probabilistically either weakly correlated or strongly correlated. If they are locally correlated, we expect the Boltzmann–Gibbs entropy $S_{BG} = -k \sum_i p_i \ln p_i$ to be extensive, i.e., $S_{BG}(N) \propto N$ for $N \rightarrow \infty$. In particular, if they are independent, S_{BG} is strictly additive, i.e., $S_{BG}(N) = NS_{BG}(1)$, $\forall N$. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy $S_q = k[1 - \sum_i p_i^q]/(q - 1)$ (with $S_1 = S_{BG}$) for some special value of $q \neq 1$ to be the one which is extensive [i.e., $S_q(N) \propto N$ for $N \rightarrow \infty$]. Another concept which is relevant is strict or asymptotic scale-freedom (or scale-invariance), defined as the situation for which all marginal probabilities of the N-system coincide or asymptotically approach (for $N \rightarrow \infty$) the joint probabilities of the (N - 1)-system. If each subsystem is a binary one, scale-freedom is guaranteed by what we hereafter refer to as the Leibnitz rule, i.e., the sum of two successive joint probabilities of the N-system coincides or asymptotically approaches the corresponding joint probability of the (N - 1)-system. The kinds of interplay of these various concepts are illustrated in several examples. One of them justifies the title of this paper. We conjecture that these mechanisms are deeply related to the very frequent emergence, in natural and artificial complex systems, of scale-free structures and to their connections with nonextensive statistical mechanics. Summarizing, we have shown that, for asymptotically scale-invariant systems, it is S_q with $q \neq 1$, and not S_{BG} , the entropy which matches standard, clausius-like, prescriptions of classical thermodynamics.

continuous variables (N = 1, 2, 3). In both cases, certain correlations that are scale-invariant in a suitable limit can create an intrinsically inhomogeneous occupation of phase space. Such systems are strongly reminiscent of the so called scale-free networks (24, 25), with their hierarchically structured hubs and spokes and their nearly forbidden regions.

Discrete Models

Some Basic Concepts. The most general probabilistic sets for N equal and distinguishable binary subsystems are given in Fig. 1 with

$$\sum_{n=0}^{N} \frac{N!}{(N-n)!} \, \pi_{N,n} = 1$$

$$(\pi_{N,n} \in [0, 1]; N = 1, 2, 3, \dots; n = 0, 1, \dots, N).$$
 [2]

Let us from now on call *Leibnitz rule* the following recursive relation:

$$\pi_{N,n} + \pi_{N,n+1} = \pi_{N-1,n} \ (n = 0, 1, \dots, N-1; N = 2, 3, \dots).$$
[3]

This relation guarantees what we refer to as *scale-invariance* (or *scale-freedom*) in this article. Indeed, it guarantees that, for any value of N, the associated *joint probabilities* $\{\pi_{N,n}\}$ produce *marginal probabilities* which coincide with $\{\pi_{N-1,n}\}$. Assuming $\pi_{10} + \pi_{11} =$

Playing with additive duality $(q \rightarrow 2-q)$ and with multiplicative duality $(q \rightarrow 1/q)$ (and using numerical results related to the q – generalized central limit theorem)

we conjecture

 $q_{rel} + \frac{1}{q_{sen}} = 2$ and $q_{stat} + \frac{1}{q_{rel}} = 2$ hence $1-q_{sen} = \frac{1-q_{stat}}{3-2q_{stat}}$

 $q_{rel} = 4$

hence only one independent!

Burlaga and Vinas (NASA) most precise value of the q-triplet is

 $q_{stat} = 1.75 = 7/4$

hence

and

 $q_{sen} = -0.5 = -1/2$ (consistent with $q_{sen} = -0.6 \pm 0.2$!) (consistent with $q_{rel} = 3.8 \pm 0.3$!)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)

$$\mathcal{E}_{sen} \equiv 1 - q_{sen} = 1 - (-1/2) = 3/2$$

$$\mathcal{E}_{rel} \equiv 1 - q_{rel} = 1 - 4 = -3$$

$$\mathcal{E}_{stat} \equiv 1 - q_{stat} = 1 - 7/4 = -3/4$$

We verify

(harmonic mean!)

N.O. Baella (2008)

EDGE OF CHAOS OF THE LOGISTIC MAP:

$$q - triplet \begin{cases} q_{sensitivity} = q_{entropy} = 0.244487701341282066198... \\ q_{relaxation} = 2.249784109... \\ q_{stationary state} = 1.65 \pm 0.05 \end{cases}$$

hence
$$q_{sens} < 1 < q_{stat} < q_{rel}$$

CONJECTURE: [N.O. Baella (2010)]
$$\mathcal{E} \equiv 1 - q$$

$$\mathcal{E}_{relaxation} + \mathcal{E}_{sensitivity} = \mathcal{E}_{sensitivity} \mathcal{E}_{stationary state}$$

hence

$$q_{stationary \ state} = \frac{q_{relaxation} - 1}{1 - q_{sensitivity}} = 1.65424...$$

Available online at www.sciencedirect.com

Physica A 384 (2007) 507-515

www.elsevier.com/locate/physa

Radial velocities of open stellar clusters: A new solid constraint favouring Tsallis maximum entropy theory

J.C. Carvalho^a, B.B. Soares^a, B.L. Canto Martins^a, J.D. do Nascimento Jr.^a, A. Recio-Blanco^b, J.R. De Medeiros^{a,*}

^aDepartamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brazil ^bDepartmento Cassiopée, UMR 6202, Observatoire de la Côte d'Azur, B.P. 4229, F-06304, Nice, Cedex 4, France

Fig. 5. Value of the fitted parameter q as a function of the cluster age.

© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

COMPRESSIBLE "TURBULENCE" OBSERVED IN THE HELIOSHEATH BY VOYAGER 2

L. F. BURLAGA¹ AND N. F. NESS²

¹ Geospace Physics Laboratory, Code 673, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; Leonard, F.Burlaga@NASA.gov ² Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington DC 20064, USA; nfnudel@yahoo.com Received 2009 June 2; accepted 2009 July 22; published 2009 August 27

EDGE OF CHAOS OF THE LOGISTIC MAP:

(Using result in http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt)

 $q = 1 - \frac{\ln 2}{\ln \alpha_F} =$

0.2444877013412820661987704234046804052344469354900576736703650 (1018 meaningful digits)

Office for Outer Space Affairs United Nations Office at Vienna

IHY 2007: VOYAGER 1: Fundamental Physics

The atmosphere of the Sun beyond a few solar radii, known as HELIOSPHERE, is fully ionized plasma expanding at supersonic speeds, carrying solar magnetic fields with it. This solar wind is a driven non-linear non-equilibrium system. The Sun injects matter, momentum, energy, and magnetic fields into the heliosphere in a highly variable way. Voyager 1 observed magnetic field strength variations in the solar wind near 40 AU during 1989 and near 85 AU during 2002. Tsallis' non-extensive statistical mechanics, a generalization of Boltzmann-Gibbs statistical mechanics, allows a physical explanation of these magnetic field strength variations in terms of departure from thermodynamic equilibrium in an unique way:

SOLAR WIND: Magnetic Field Strength

Nonextensive statistical mechanics and thermodynamics

C. T.

Possible generalization of Boltzmann-Gibbs statistics J Stat Phys **52**, 479 (1988)

E.M.F. Curado and C. T.

Generalized statistical mechanics: connection with thermodynamics J Phys A 24, L69 (1991) [Corrigenda: 24, 3187 (1991) and 25, 1019 (1992)]

C. T., R.S. Mendes and A.R. Plastino

The role of constraints within generalized nonextensive statistics Physica A **261**, 534 (1998)

NONEXTENSIVE STATISTICAL MECHANICS AND THERMODYNAMICS (CANONICAL ENSEMBLE):

Extremization of the functional

yields

$$p_i = \frac{e_q^{-\beta_q(E_i - U_q)}}{\mathbf{Z}_q}$$

with $\beta_q \equiv \frac{\beta}{\sum_{i=1}^{W} p_i^q}$, $\beta \equiv energy \ Lagrange \ parameter$, and $\mathbf{Z}_q \equiv \sum_{i=1}^{W} e_q^{-\beta_q(E_i - U_q)}$

We can rewrite

$$p_i = \frac{e_q^{-\beta'_q E_i}}{Z'_q}$$

with
$$\beta_{q}' \equiv \frac{\beta_{q}}{1 + (1 - q)\beta_{q}U_{q}}$$
, and $Z_{q}' \equiv \sum_{i=1}^{W} e_{q}^{-\beta_{q}'E}$

And we can prove

(i) $\frac{1}{T} = \frac{\partial S_q}{\partial U_s}$ with $T \equiv \frac{1}{k\beta}$ (*ii*) $F_q \equiv U_q - TS_q = -\frac{1}{\beta} \ln_q Z_q$ where $\ln_q Z_q = \ln_q \mathbf{Z}_q - \beta U_q$ (*iii*) $U_q = -\frac{\partial}{\partial\beta} \ln_q Z_q$ (*iv*) $C_q \equiv T \frac{\partial S_q}{\partial T} = \frac{\partial U_q}{\partial T} = -T \frac{\partial^2 F_q}{\partial T^2}$

(i.e., the Legendre structure of Thermodynamics is q-invariant!)

PHYSICAL REVIEW LETTERS

Tunable Tsallis Distributions in Dissipative Optical Lattices

P. Douglas, S. Bergamini, and F. Renzoni

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom (Received 10 January 2006; published 24 March 2006)

We demonstrated experimentally that the <u>momentum distribution of cold atoms in dissipative optical</u> <u>lattices</u> is a Tsallis distribution. The parameters of the distribution can be continuously varied by changing the parameters of the optical potential. In particular, by changing the depth of the optical lattice, it is possible to change the momentum distribution from Gaussian, at deep potentials, to a power-law tail distribution at shallow optical potentials.

Experimental and computational verifications

by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006)

