題名 ISWI Newsletter - Vol. 2 No. 45 差出人 maeda@serc.kyushu-u.ac.jp

* ISWI Newsletter - Vol. 2 No. 45 10 June 2010 * I S W I = International Space Weather Initiative(www.iswi-secretariat.org) * Publisher: Professor K. Yumoto, SERC, Kyushu University, Japan * * Editor-in-Chief: Mr. George Maeda, SERC (maeda@serc.kyushu-u.ac.jp) * Archive location: www.iswi-secretariat.org (maintained by Bulgaria) ************************* Attachment(s): (1) OMTIs_of Nagoya University, 400 KB pdf, 2 pages.

Dear ISWI Participant:

Japan is a major contributor of instrument arrays for ISWI -- previously, this newsletter has discussed the MAGDAS Project (Kyushu University) and the CHAIN Project (Kyoto University).

Today, I attach a summary report of the OMTIs of Nagoya University.

Before the end of ISWI, I hope this newsletter can cover all ISWI instrument arrays. Please send your pdf to me for newsletter distribution.

Cheers, George Maeda The Editor.

The Optical Mesosphere Thermosphere Imagers (OMTIs) for imaging measurement of the upper atmosphere and the ionosphere

Kazuo Shiokawa and Yuichi Otsuka Solar-Terrestrial Environment Laboratory, Nagoya University

The Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, has operated the Optical Mesosphere Thermosphere Imagers (OMTIs) since 1998. The OMTIs consists of all-sky airglow imagers, Fabry-Perot interferometers, scanning

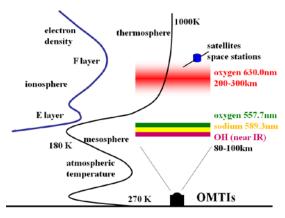


Figure 1. Through nocturnal airglow emissions, OMTIs measures the upper atmosphere where satellites and space stations fly.

Figure 2. A photo of OMTIs installation at Indonesia.

photometers, and airglow temperature photometers. These instruments obtain two-dimensional images, Doppler winds, and temperatures of the upper atmosphere altitudes of 80-300 km through nocturnal airglow emissions which is invisible weak light emitted from the upper atmosphere. There are several airglow emission layers in the upper atmosphere, for example, emission from oxygen atom at a wavelength of 557.7 nm at 90-100 km, infrared emission from hydroxyl (OH) at 80-90 km, and 630.0-nm emission from oxygen at 200-300 km, as schematically shown in Figure 1. By changing the measurement wavelengths, we observe dynamics of the mesosphere, thermosphere, and ionosphere separately. The upper atmosphere is the region where most of the artificial satellites and space stations exist. of**OMTIs** Thus the measurements contribute to the space use by human beings through understanding "geospace" environment.

The OMTIs instruments are set at more than 10 ground-based stations in Far-East Russia, Japan, Indonesia, Thailand, Australia, Canada, and Norway, as shown in Figure 3. The installation of OMTIs instruments contributes understanding of space research at these countries and collaborations among international scientists including those in the developing countries. Details of OMTIs are available at http://stdb2.stelab.nagoya-u.ac.jp/omti/index.html.

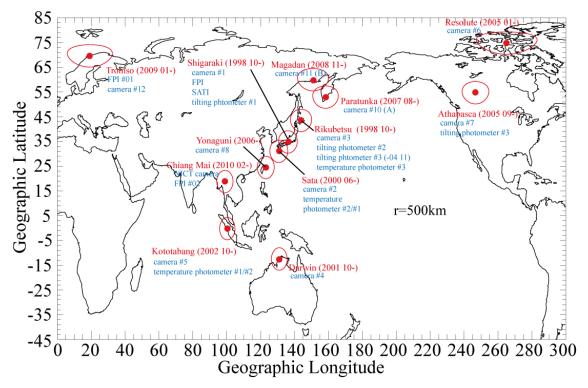


Figure 3. Current stations of the Optical Mesosphere Thermosphere Imagers. The collaborators of these stations are: (1) Paratunka and Magadan: Institute of Cosmophysical Research and Radiowave Propagation (IKIR), Far Eastern Branch of the Russian Academy of Sciences, (2) Shigaraki: Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, (3) Darwin: IPS Radio and Space Services, Australia, (4) Kototabang: Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, and National Institute of Aeronautics and Space (LAPAN), Indonesia, (5) Chiang Mai: Chiang Mai University, Thailand, and National Institute of Information and Communications Technology (NiCT), Japan, (6) Resolute: SRI International, USA, and University of Calgary, Canada, (7) Athabasca: Athabasca University and University of Calgary, Canada, (8) Yonaguni: Electronic Navigation Research Institute (ENRI), Japan, and National Insitute of Information and Communications Technology (NiCT), Japan, and (9) Norway: EISCAT Scientific Association, and the National Institute of Polar Research, Japan.