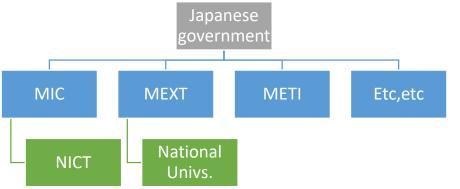
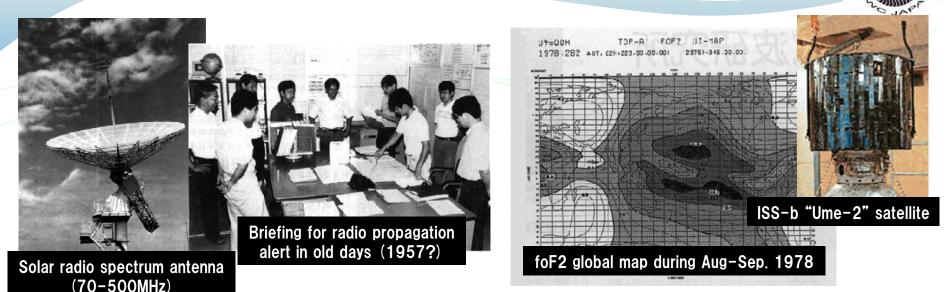
Introduction of space weather Research and Operation in Asia-Oceania

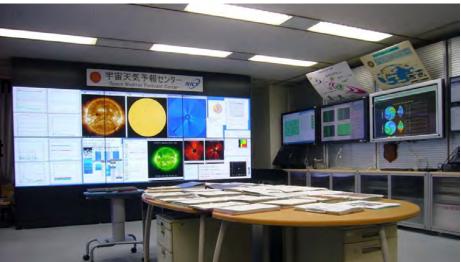

Mamoru Ishii

Director, Space Environment Laboratory, NICT, Japan Secretary, Asia-Oceania Space Weather Alliance (AOSWA) Deputy-Director, International Space Environment Services (ISES)

NICT


(National Institute of Information and Communications Technology)

- The "ONLY National Institute" of Information and Communications technology in Japan
- Staff: permanent scientists: 300, temporal scientists: 400, administrative: 200 (approximately).
- Headquarter: Koganei, Tokyo
- Main Blanches: Keihanna, Kobe, Kashima, Okinawa
- Observatories: Wakkanai, Hiraiso, Yamagawa, Okinawa


NICT Space Weather Services

Since 1952, NICT have operationally measured solar radio spectrum, and started operational alert service for radio propagatio since 1957.

In 1978, NICT provided foF2 global map first in the world using satellite observation.


Now, NICT has been providing Space Weathe forecast information including weekend, and plan to operate 24/7 since 2019.

The present NICT Space Weather Center

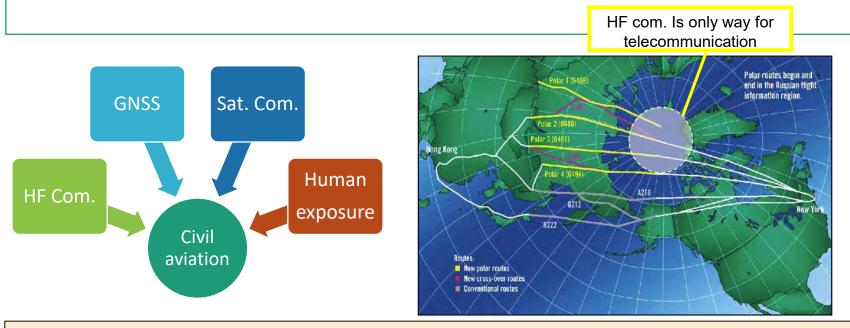
The Solar Flare on Sep. 6, 2017

Detail of the event

Solar images observed by SDO satellite(Left:visible, Right:UV)

After the Event on Sep. 6, 2017

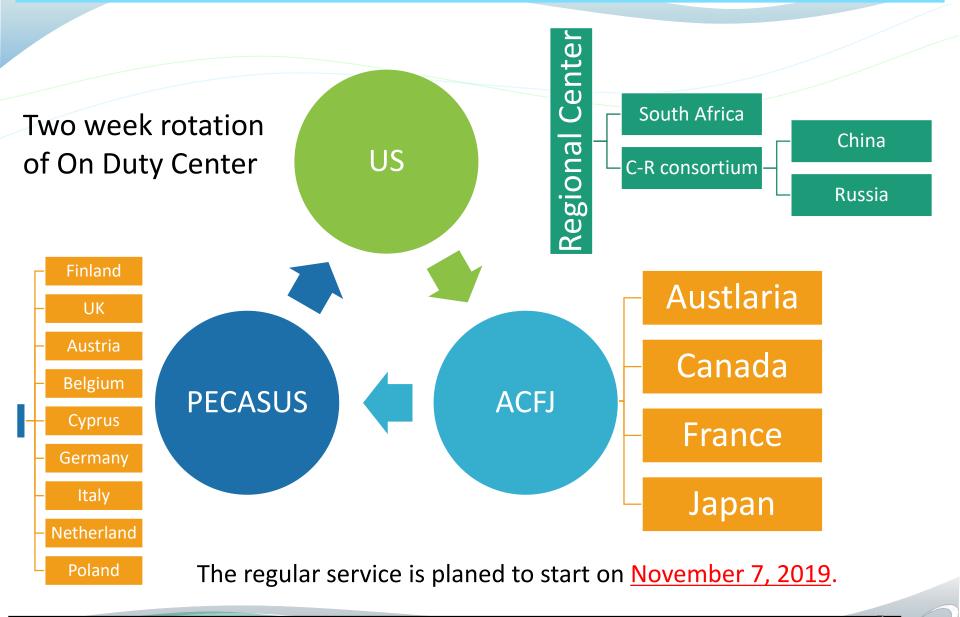
NICT Future ICT Center (Kobe)


tion

- Cabinet Office starts the discussion weather as a part of SSA in Aerospace Bas.
 plan
- NICT prepared a robust system of Space Weather services. NICT headquarter locates in Koganei, Tokyo. It has been preparing a back up Center for space weather services at Future ICT Center, Kobe city.
- The Japanese Radio Law was amended for including space weather as categories of Spectrum User Fee Budget.
- NICT started 24/7 human operation for Space Weather services since <u>Dec. 2019.</u>

NICT Koganei Campus

ICAO/WG-MISD (MET Information and Service Development)


- Annex 3 of ICAO is determined the mandatory information of meteorology for aviation.
- ICAO discusses to add SWx information in Annex 3 NOW.
- It is expected to use SWx as one of mandatory information for aviation on 2020s.

In 2018, The following three entities have assigned as ICAO Space Weather Global Center

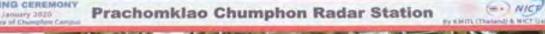
- US
- ACFJ (Australia, Canada, France(leader), Japan)
- European Consortium(PECASUS: Austria, Belgium, Cyprus, Finland (leader), Germany, Italy, Netherland, Poland, UK)

ICAO Space Weather Services structure

AOSWA

Asia-Oceania Space Weather Alliance

Asia-Oceania Space Weather Alliance (AOSWA)


- The Asia-Oceania Space Weather Alliance (AOSWA) established on 2010 for information exchange among Space Weather organizations in Asia and Oceania.
- Members: 27 organizations from 13 countries
- AOSWA workshop is held every one and a half years. The last one was hosted by LAPAN in Bandung, Indonesia in September, 2018.
- Next meeting is scheduled on Aug. 10-13 2020 in Malaysia hosted by UKM.
- Electric newspaper "AOSWA link" is circulated

AOSWA-5 @ Bandung in Sep. 19-21, 2018 hosted by LAPAN, Indonesia

Establishment of VHF radar in Chumphon, Thailand on Jan. 2020

East

Equator

NICT cooperation with Asian Countries

MoU with GISTDA@NICT Otemachi Office,

ASEAN IVO symposium@KMITL Chumphon Campus, Jan. 17, 2020

"ICT Virtual Organization of ASEAN Institutes and NICT (ASEAN IVO)" is a global alliance of ICT R&D institutes and universities in the ASEAN region and Japan. The mission of ASEAN IVO is to seek and identify strategic ICT research areas in the ASEAN region, and promote collaborative projects in them.

Space Weather Capability

Space Weather Operational Office

Central Weather Bureau

中央氣象局

Astronomical Station 天文站

Taiwan Analysis Center for COSMIC 臺灣資料分析中心

Space Weather Operational Office 太空天氣作業辦公室

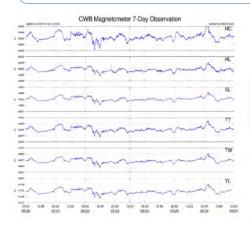
- Official agency for weather forecast and service in Taiwan as well as sunspot observatory since 1947.
- CWB collaborated with the National Space Organization to process radio occultation data from FORMOSAT-3 & 7.

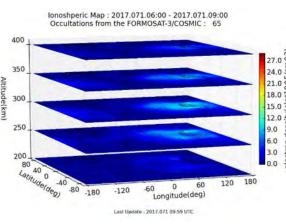
It started to deliver space weather products and information since 2016.

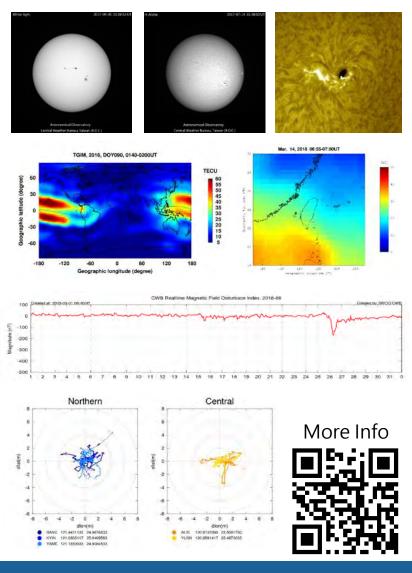
Space Weather Operational Work Flow

Web - https://swoo.cwb.gov.tw/

Mail - swoo@cwb.gov.tw


Central Weather Bureau, M.O.T.C, Taiwan (R.O.C.)


Space Weather Products


Space Weather Operational Office

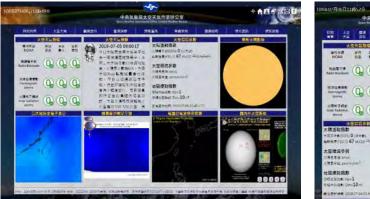
Real-time Observation and Monitoring

- ✓ Ground solar surface and sunspot observation
- ✓ Real-time global/regional TEC map.
- ✓ Real-time Taiwan magnetometer observation and geomagnetic disturbance index.
- Real-time Taiwan ground GNSS precise point positioning error monitoring
- Near real-time global 3D ionospheric electron density structures and specified parameters.

Web - https://swoo.cwb.gov.tw/

Mail - swoo@cwb.gov.tw

Central Weather Bureau, M.O.T.C, Taiwan (R.O.C.)


Space Weather Models

Space Weather Operational Office

Forecast Model

- ✓ Magnetopause Position Forecast
- ✓ Ionospheric Scintillation Forecast
- D-region Radio Absorption Estimation
- ✓ Thermosphere-ionosphere Coupled Model
- ✓ Ensemble Data assimilation system for ionospheric space weather.

Check our website for more Information

http://swoo.cwb.gov.tw/V1/index_Eng.htm

Web - https://swoo.cwb.gov.tw/

Mail – swoo@cwb.gov.tw

Central Weather Bureau, M.O.T.C, Taiwan (R.O.C.)

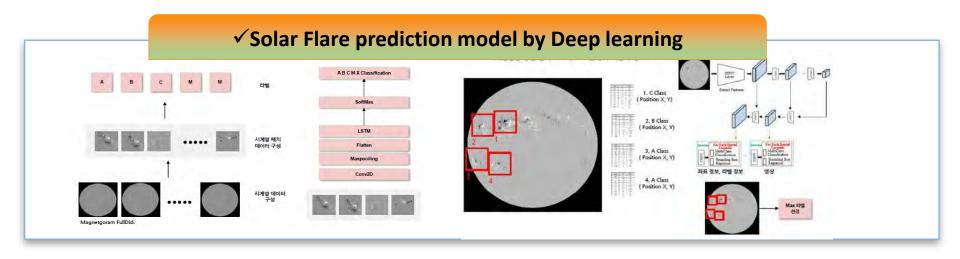
Korean Space Weather Center

KSWC's Mission

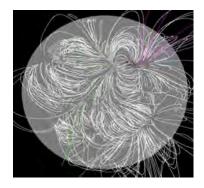
- Research on the technology for receiving space radio waves
- Observation of solar spots, geomagnetism and ionosphere
- Analysis of the received data, the results of observation

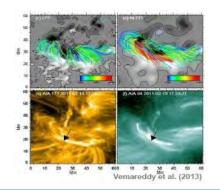
Main Task

- Space weather forecast and alert services
 - Monitor and analyze solar activities 24 hours a day
 - Provide forecast and alert services to civil area

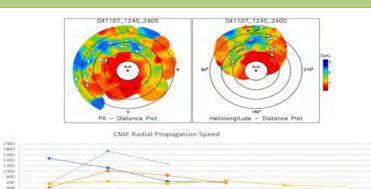

Strengthen space weather cooperation network

- Cooperate domestically to mitigate the space weather risk
- Build international cooperation network with NICT and NOAA(SWPC) to develop more accurate prediction models and improve services





Efforts to increase the SWx forecasting accuracy



✓ Solar magnetic field analysis model

✓ Solar wind analysis model by IPS

International Cooperation - KSWC

<Discussion with NASA JASD>

<SWx conference in Korea>

<The 4th AOSWA conference in Korea>

<Forecaster training with SUPARCO>

https://spaceweather.rra.go.kr/?lang=en

E-mail : dyne1225@dorea.kr (Jangsuk Choi)

National Space Science Center, Chinese Academy of Sciences (NSSC/CAS)

Main laboratories related to Space Weather

There are two key laboratories related to space weather researches and services at NSSC/CAS: (1) State Key Laboratory of Space Weather: the first state key laboratory in space physics in China. Mainly devoted to the investigation of the fundamental space weather processes. (2) Key Laboratory of Science and Technology on Environmental Space Situation Awareness, CAS (ESSA): Mainly devoted to operational space weather observation, modeling, and services. (http://www.nssc.ac.cn)

Space Environment Prediction Center (SEPC), NSSC/CAS

The Space Environment Prediction Center (SEPC) in NSSC was established in 1992, which became the first professional organization and official source for providing space weather services in China. It runs under the ESSA key laboratory, while also scientifically supported by the State Key Laboratory of Space Weather in observation and modeling. SEPC is responsible for space weather services for China Manned Space missions, Lunar Exploration missions, and China Space Science Satellites (http://eng.sepc.ac.cn).

Space Weather Observations

Ground Based Networks

Future Missions

(1) The Space Environment Monitoring Network (SEMnet) of CAS: composed of 17 observatories equipped with a total of 40 ground-based instruments. These key instruments are responsible for providing data in near real time for the purpose of space weather monitoring and forecasting.

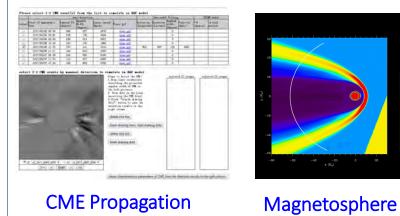
(2) The Meridian Project: consists a chain of 15 observatories located roughly along 120°E and 30°N lines, mainly used for basic and applied research and modeling.

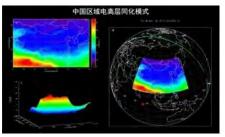
International Space Weather Meridian Circle Program (IMCP)

Connect 120°E and 60°W meridian lines forming chains of ground based observatories to enhance the ability of monitoring space environment worldwide.

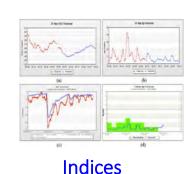
SMILE Mission

Payloads onboard SMILE:

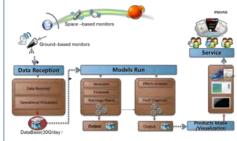

SXI: X-ray Imaging of the magnetosphereUVI: UV imaging of the auroraLIA: PlasmaMAG: Magnetic field


The Solar wind Magnerosphere Ionosphere Link Explorer (SMILE) is a Chinese Academy of Sciences (CAS) and European Space Agency (ESA) collaborative science mission designed to study the interaction between the solar wind and the Earth's magnetosphere.

Space Weather Services


Space Weather Models

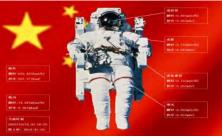
Operational models have been developed covering solar and interplanetary, magnetosphere, ionosphere thermosphere, and solar and geomagnetic indices (F10.7, Ap, Kp, Dst, AE, etc.).



Ionosphere

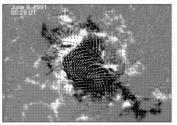
Space Weather Services

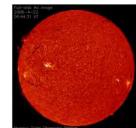
SEPC of NSSC/CAS develops technology systems to provide both general services to the public and customized services to special users. General services are provided via website, text messages, mobile apps, and China's social networking tools: Weibo and Wechat. Customized users include China's manned space missions, lunar exploration, and China space science satellites.



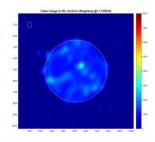
Technology System

Website and App


SWx Service for China's manned space missions


CAS Key Laboratory of Solar Activity

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China



Huairou Observing Station

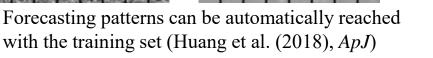
Mingantu Observing Station

Solar Activity Prediction Center

• Short-term prediction (within 2 or 3 days)

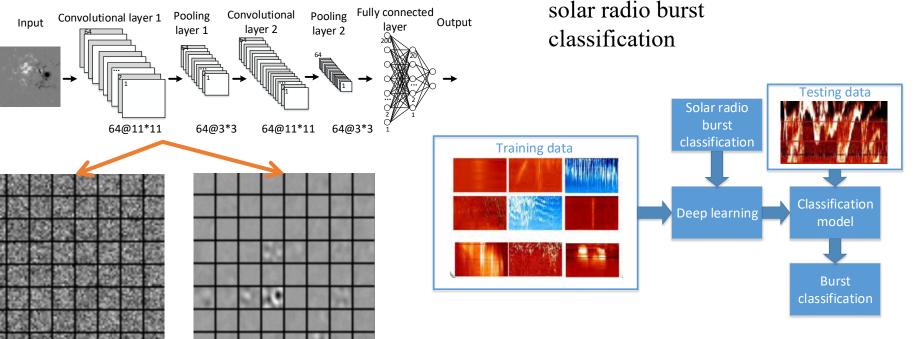
• Medium-term prediction (within 1 or 2 weeks)

• Long-term prediction (in time scale of solar cycle)



CAS Key Laboratory of Solar Activity

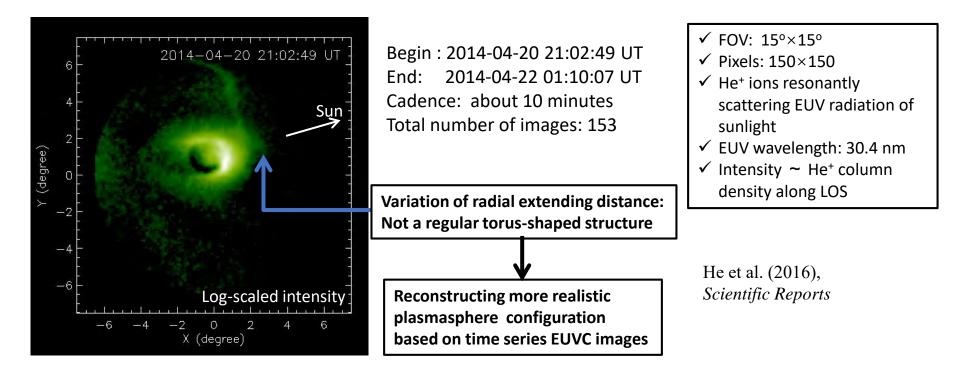
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China


Deep learning based forecasting model and data product

Multimodal deep learning for solar radio burst classification

Short-term Solar flare forecasting model

Ma et al. (2017), Pattern Recognition



CAS Key Laboratory of Solar Activity

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China

Response of the plasmaspheric configuration to substorms

Time series images observed by EUVC during 20-22 April 2014

AOSWA

Asia-Oceania Space Weather Alliance

Tack Vielen Dank Obrigado Merci ありがとうございます Bedankt Takk 感謝您 Terima Kasih 谢谢 Grazie ขอบคุณ Спасибо Thank You Kiitos Tak Teşekkür Ederiz 감사합니다 Gracias Σας ευχαριστούμε Dziękujemy

Table 3-2.Thresholds for space weatheradvisory

		Moderate	Severe
GNSS			
	Amplitude Scintillation (S4)(dimensionless)	0.5	0.8
	Phase Scintillation (Sigma- Phi)(radians)	0.4	0.7
	Vertical TEC (TEC Units)	125	175
RADIATION			
	Effective Dose (micro-Sieverts/hour)	30	80
HF			
	Auroral Absorption (Kp)	8	9
	PCA (dB from 30MHz Riometer data)	2	5
	Solar X-rays (0.1 - 0.8 nm)(W-m ⁻²)	1X10 ⁻⁴ (X1)	1X10 ⁻³ (X10)
	Post-Storm Depression (MUF)*	30%	50%

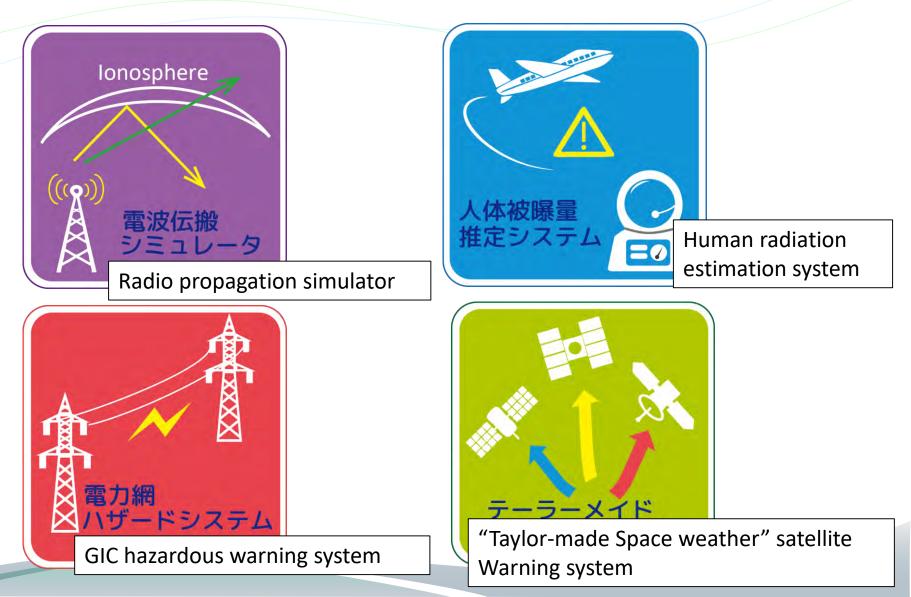
25

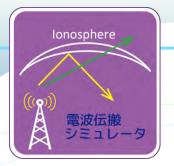
2018 Space Weather as a Global Challenge

- International cooperative framework "Space Weather as a Global Challenge" is conducted on every year since 2016.
- The 3rd meeting of "Space Weather as a Global Challenge" was held at Japan Embassy on July 24, 2018 hosted by Japan Embassy, NICT, JAXA and DoS.
- 77 people attended from various countries.
- Discussing Theme
 - Japan's Space Weather Efforts and Outlook
 - Perspectives from around the Globe
 - Toward Improved Space Weather Services and preparedness
 - Perspectives from the Private Sector
- Preparedness for severe space Weather disaster with international collaboration activation of private sector were mainly discussed.

Project for Solar-Terrestrial Environment Prediction

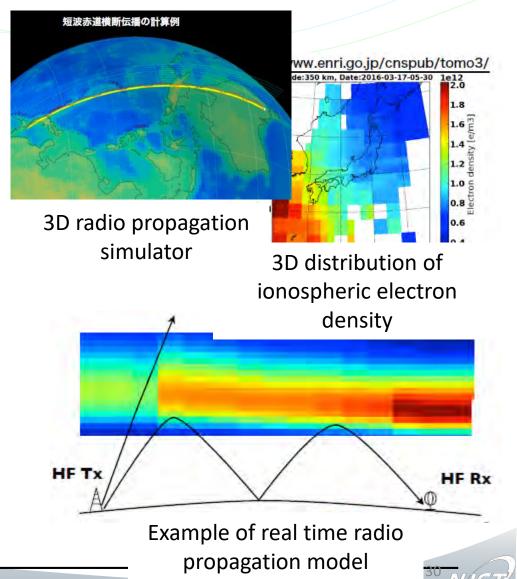
秋田


Tohoku U


PSTEP is a nation-wide project in Japan for space weather & space climate study.

- 20 Institutes & 100 Researchers
- Grant-in-Aid for Scientific Research on Innovative Areas from MEXT/Japan (2015-2019)

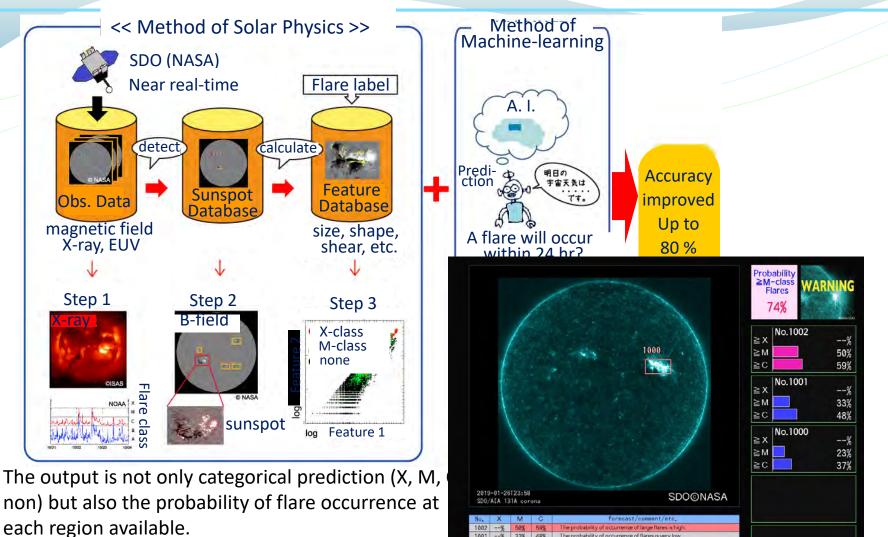
Product to be created



Developing Radio Propagation model

Radio propagation model is necessary to notice the usability of HF, VHF and GNSS at a particular point. We develop a new 3D radio propagation model "HF-START"

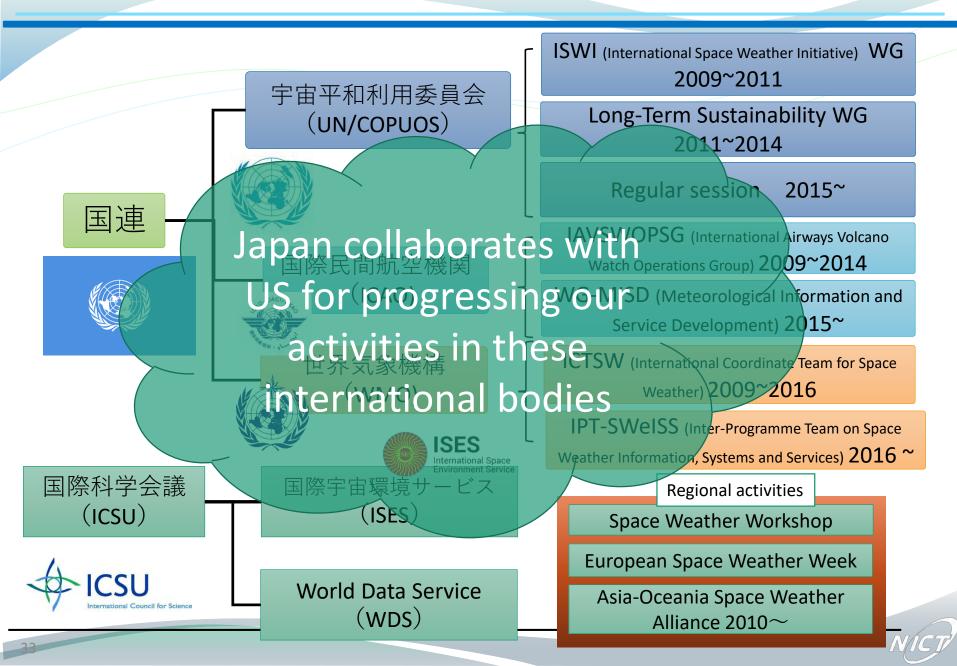
- The fundamental structure of radio propagation parameter for HF has completed. Validations of the model comparing with observational results are to be executed.
- The model for GNSS is planed to be build cooperated with CNES, France.
- Real time radio propagation model is to be possible by connecting the 3D tomography technique build by Kyoto Univ.


Purpose of Estimation system of human exposure

- Initial purpose
 - Is to establish the system for providing the present radiation level in the airplane when the large proton event is occurred to happen to the GLE events.
- Final goal
 - Is to develop the system to provide the forecast of temporal variation of human radiation in the airplane with several hours from the event occurred.
 - And to develop the system to estimate the nowcast and forecast of human radiation in ISS

Solar flare prediction model with Al

32


The probability of occurrence of flares is very low

*X-class flares are not predicted by DeFN model now.

48%

The real-time operation using **Deep Flare Net** (DeFN) model based on deep-learning method will start since September 2018.

Space Weather international bodies

