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Abstract. In this paper we investigate the scaling behavior, based on Diffusion Entropy
Analysis and Standard Deviation Analysis, of the magnetic field strength fluctuations
recorded by Voyager-I in the heliosphere. The Voyager-I data set exhibits scaling be-
havior and may follow Lévy-type probability distribution. A general fractional-order
spatial and temporal diffusion model could be utilized for the interpretation of this
Lévy-type behavior in comparison to Gaussian behavior. This result confirms earlier
studies of scaling behavior of the heliospheric magnetic field strength fluctuations based
on non-extensive statistical mechanics leading to the determination of the nonextensiv-
ity q-triplet.

1 Introduction

The atmosphere of the Sun beyond a few solar radii (heliosphere) is fully ionized plasma
expanding at supersonic speeds, carrying solar magnetic fields with it [1]. This solar
wind is a driven non-linear non-equilibrium system. The Sun injects matter, momen-
tum, energy and magnetic fields into the heliosphere in a highly variable manner. Fluc-
tuations of the magnetic field strength in the solar wind may have fractal and mul-
tifractal scaling structure over a large range of scales in the region from 1 to 85 AU.
This type of scaling represents a hierarchical structure in phase space as represented in
nonextensive statistical mechanics, in contrast to the uniformly occupied phase space
of Boltzmann-Gibbs statistical mechanics [2].

The spacecraft Voyager-I crossed the termination shock at a distance of 40 AU
(1989) and 85 AU (2002) from the Sun and moved through the heliosheath toward the
interstellar medium. The distributions of magnetic field strength fluctuations observed
in the heliosheath are Gaussian over a wide range of time scales. The probability den-
sity of changes in the magnetic field strength on short-time scales exhibit non-Gaussian
behavior while on long-time scales the Gaussian assumption has been confirmed [3,4].
This suggests that the inner heliosheath is not in statistical equilibrium.
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For the basic quantities (e.g., sensitivity to the initial conditions, relaxation towards
equilibrium of correlation functions, equilibrium distribution of energies) of systems de-
scribed by Boltzmann-Gibbs statistical mechanics, the exponential function emerges
ubiquitously as the adequate one. For non-equilibrium situation (e.g., non-equilibrium
of energies, other chaotic situations) a new and more general density function is needed.
In order to take care of these non-equilibrium, unstable or chaotic situations the expo-
nential type function is replaced by the q-exponential function for systems described
by nonextensive statistical mechanics [5,6] or the entropic pathways [13,15,16]. The
question appears about what is the value of q and which precise physical meaning can
be ascribed to q. The dynamical scenario for nonextensive statistical mechanics is an
appropriate quantifier of nonextensivity in terms of a q-triplet. Such a q-triplet was the-
oretically predicted by Tsallis [5,6]. Accordingly, a stationary state is characterized by a
triplet of q-values (qstat, qsen, qrel) 6= (1, 1, 1), where qstat > 1, qsen < 1, and qrel > 1. Sub-
sequently, the analysis of experimental and observational data in terms of non-extensive
statistical mechanics led to the discovery of q-triplets for the magnetic field strength
fluctuations [3,4], temperature fluctuations of the microwave background radiation [7],
solar magnetic activity [8], and stratospheric ozone layer variability [9]. The q-triplet
for the magnetic field strength fluctuations of the solar wind is shown in Figure 1.

In this paper we analyze the Voyager-I magnetic field strength recordings with stan-
dard deviation analysis (SDA) and diffusion entropy analysis (DEA) methods focusing
on the probability density function realized in the data set [11]. A similar analysis
had been undertaken for the solar neutrino flux as recorded in the Super-Kamiokande-I
experiment [10].

2 Methods of Analysis: SDA and DEA

To study the scaling behavior of the Voyager-I magnetic field strength data (Figure 2)
we make use of two complementary scaling analysis methods: The Standard Deviation
Analysis (SDA) and the Diffusion Entropy Analysis (DEA). The purpose for utilizing
the two methods to analyze the scaling properties of the time series is to discriminate
the stochastic nature of the data sets: Gaussian or Lévy-type. Such methods have been
developed in great detail by Scafetta [11, 12] emphasizing the fact that the SDA is
based on the analysis of the variance of the data while the DEA directly measures the
probability density function p(x, t) of the data.

The DEA perceives the numbers in a time series as the trajectory of a diffusion
process. In the following x denotes the diffusion variable of such a process. The scaling
property of p(x, t) takes the form

p(x, t) =
1

tδ
F (

x

tδ
). (1)
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Figure 1: The q-triplet as measured from the magnetic field strength fluctuations of
the solar wind. The three sets of curves correspond to daily averages of the data from
1989 (40 AU) and from 2002 (85 AU) by NASA‘s Voyager-I spacecraft [3,4,5].
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Figure 2: The figure shows the daily averages of the magnetic field strength fluctuations
versus time t measured by Voyager-I during 1989 (45 AU).
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Scaling laws reflect underlying physical principles that are independent of detailed
dynamics of particular models. Scale invariance is widespread in natural systems [17].

In the SDA one examines the scaling properties of the second moment of the diffusion
process generated by a time series. The standard deviation D(t) of the variable x is

D(t) = (< x2, t > − < x, t >2)1/2 ∝ tH . (2)

The Hurst exponent H is interpreted as the scaling exponent being evaluated from
the gradient of the fitted straight line in the log-log plot of the entropy S(t) over
time t. The DEA determines the scaling exponent δ evaluated through the Shannon
entropy S(t) of the diffusion process generated by the variation of the time series. The
probability density function p(x, t) is determined by means of the sub-trajectories

Xn(t) =
l

∑

i=0

ξi+n, n = 0, 1, . . . (3)

If the scaling condition in (1) is valid, the corresponding entropy increases over time
as

S(t) = −
∫ +∞

−∞

dx p(x, t) ln[p(x, t)]. (4)

Using the scaling condition in (1), we obtain

S(t) = A+ δ ln(t). (5)

With

A = −
∫ +∞

−∞

dy F (y) ln[F (y)] = const., (6)

where y = x
tδ
. Eq. (5) indicates that in the case of a diffusion process with a

scaling probability density, its entropy S(t) increases linearly with ln(t). The scaling
exponent δ is being determined from the gradient of the fitted straight line in the
linear-log plot of S(t) over time t. For fractional Brownian motion the scaling exponent
δ coincides with the Hurst exponent H . For random noise with finite variance, the
probability density function p(x, t) will converge, according to the central limit theorem,
to a Gaussian distribution with H = δ = 0.5. If the Hurst exponent H is different
from the scaling exponent δ, the scaling represents anomalous behavior. The diffusion
process characterized by Lévy flights belongs to anomalous diffusion. In this specific
case (1) is still valid but the variance is not finite and the variance scaling exponent
can not be defined. A second type of anomalous diffusion is due to Lévy walk based on
a generalization of the central limit theorem. In this case of anomalous diffusion, the
second moment is finite and the exponents H and δ obey the relation

δ =
1

3− 2H
. (7)

The results of applying SDA and DEA to the time series of Voyager-I magnetic
field strength fluctuations are shown in Figure 3 and Figure 4. These plots are fitted
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Figure 3: Numerical standard deviation analysis results in blue with a fitting line in
green for H = 0.5 and in red for H = 0.90, respectively.

to (2) and (5), respectively, yielding the scaling exponents H = 0.90 and δ = 0.83 for
the magnetic field strength fluctuations. Standard deviation scaling exponent H and
diffusion entropy scaling exponent δ are markedly larger than 0.5 which is taken as an
indication to follow the Lévy-type probability density function. This result supports
the conclusion for nonextensivity of the data set as derived in [3,4].

3 Preliminary Conclusions

Initial ideas to model diffusion processes showing the scaling of probability density
functions in Figures 3 and 4 we consider the following diffusion model with fractional-
order spatial and temporal derivatives [13,14,15,16]

0D
β
t N(x, t) = η xD

α
θN(x, t), (8)
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Figure 4: Numerical diffusion entropy analysis results in blue with a fitting line in green
for δ = 0.5 and in read for H = 0.83, respectively.
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with the initial conditions 0D
β−1
t N(x, 0) = σ(x), 0 ≤ β ≤ 1, limx→±∞N(x, t) = 0, where

η is a diffusion constant; η, t > 0, x ∈ R;α, θ, β are real parameters with the constraints

0 < α ≤ 2, |θ| ≤ min(α, 2 − α),

and δ(x) is the Dirac-delta function. Then for the fundamental solution of (8) with
initial conditions, there holds the formula

N(x, t) =
tβ−1

α|x|
H

2,1
3,3

[

|x|

(ηtβ)1/α

∣

∣

∣

(1,1/α),(β,β/α),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]

, α > 0 (9)

where ρ = α−θ
2α

.

The following special cases of (8) are of special interest for fractional diffusion mod-
els:

(i) For α = β, the corresponding solution of (8), denoted by N θ
α, we call as the

neutral fractional diffusion, which can be expressed in terms of the H-function as given
below and can be defined for x > 0:

Neutral fractional diffusion: 0 < α = β < 2; θ ≤ min {α, 2− α} ,

N θ
α(x) =

tα−1

α|x|
H

2,1
3,3

[

|x|

tη1/α

∣

∣

∣

(1,1/α),(α,1),(1,ρ)
(1,1/α),(1,1),(1,ρ)

]

, ρ =
α− θ

2α
. (10)

(ii) When β = 1, 0 < α ≤ 2; θ ≤ min {α, 2− α}, then (8) reduces to the space-
fractional diffusion equation, which is the fundamental solution of the following space-
time fractional diffusion model:

∂N(x, t)

∂t
= η xD

α
θN(x, t), η > 0, x ∈ R, (11)

with the initial conditions N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, where η is a diffusion

constant and σ(x) is the Dirac-delta function. Hence for the solution of (8) there holds
the formula

Lθ
α(x) =

1

α(ηt)1/α
H

1,1
2,2

[

(ηt)1/α

|x|

∣

∣

∣

∣

(1,1),(ρ,ρ)

( 1

α
, 1
α
),(ρ,ρ)

]

, 0 < α < 1, |θ| ≤ α, (12)

where ρ = α−θ
2α

. The density represented by the above expression is known as α-stable
Lévy density. Another form of this density is given by

Lθ
α(x) =

1

α(ηt)1/α
H

1,1
2,2

[

|x|

(ηt)1/α

∣

∣

∣

∣

(1− 1

α
, 1
α
),(1−ρ,ρ)

(0,1),(1−ρ,ρ)

]

, 1 < α < 2, |θ| ≤ 2− α. (13)

(iii) Next, if we take α = 2, 0 < β < 2; θ = 0, then we obtain the time-fractional
diffusion, which is governed by the following time-fractional diffusion model:

∂βN(x, t)

∂tβ
= η

∂2

∂x2
N(x, t), η > 0, x ∈ R, 0 < β ≤ 2, (14)
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with the initial conditions 0D
β−1
t N(x, 0) = σ(x),0 D

β−2
t N(x, 0) = 0, for x ∈ r,

limx→±∞N(x, t) = 0, where η is a diffusion constant and σ(x) is the Dirac-delta func-
tion, whose fundamental solution is given by the equation

N(x, t) =
tβ−1

2|x|
H

1,0
1,1

[

|x|

(ηtβ)1/2

∣

∣

∣

(β,β/2)
(1,1)

]

. (15)

(iv) If we set α = 2, β = 1 and θ → 0, then for the fundamental solution of the standard
diffusion equation

∂

∂t
N(x, t) = η

∂2

∂x2
N(x, t), (16)

with initial condition

N(x, t = 0) = σ(x), lim
x→±∞

N(x, t) = 0, (17)

there holds the formula

N(x, t) =
1

2|x|
H

1,0
1,1

[

|x|

η1/2t1/2

∣

∣

∣

(1,1/2)
(1,1)

]

= (4πηt)−1/2 exp[−
|x|2

4ηt
], (18)

which is the classical Gaussian density.
In conclusion we have studied the time series of Voyager-I magnetic field strength

variation and discovered scaling behavior of the variation in the dataset. Using two
scaling methods, we have evaluated SDA and DEA scaling exponents. The scaling
exponent for the Voyager-I data indicates that the data set exhibits Lévy-type behavior.
A general fractional-order spatial and temporal diffusion model could be utilized for the
interpretation of this Lévy-type behavior in comparison to Gaussian behavior.
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