題名 ISWI Newsletter - Vol. 4 No. 113 差出人 George Maeda

******************************* * ISWI Newsletter - Vol. 4 No. 113 30 October 2012 * I S W I = International Space Weather Initiative (www.iswi-secretariat.org) * Publisher: Professor K. Yumoto, ICSWSE, Kyushu University, Japan * * Editor-in-Chief: Mr. George Maeda, ICSWSE (maeda[at]serc.kyushu-u.ac.jp)* * Archive location: www.iswi-secretariat.org (maintained by Bulgaria) [click on "Publication" tab, then on "Newsletter Archive"] * Caveat: Under the Ground Rules of ISWI, if you use any material from the ISWI Newsletter or Website, however minor it may seem to you, you must give proper credit to the original source. (1) "article on ISWI Quito Workshop", 1 MB pdf, 3 pages. (2) "article on MAGDAS in Ecuador", 0.7 MB pdf, 1 page.

Re:

- (1) newspaper articles, UN/Ecuador Workshop on ISWI
- (2) "Glasgow Callisto optimistic: first light comes in focus" (web link)

Dear ISWI Participant:

"UN/Ecuador Workshop on ISWI" took place in Quito, Ecuador. The largest newspaper there wrote up some articles (in Spanish). I attach two such articles.

In the faithful service of ISWI,

George MaedaThe EditorISWI Newsletter

TECNOLOGÍA

Domingo 14 de octubre del 2012 | EL COMERCIO | CUADERNO 2 | 15

El mundo vigila con cautela al Sol

La reducción de radiaciones del Sol no enfria rá al planeta Tierra'

Nat Gopalswamy
Agencia Espacial Norteamericana NASA

This pdf circulated in Volume 4, Number 113, on 30 October 2012.

ASTRONOMÍA

Aunque el Sol ha reducido sus manchas y radiaciones, las afectaciones en el campo magnético afectan la vida humana, específicamente, en área de comunicación

Redacción Tecnología sociedad@elcomercio.com

ivir una era de hielo es imposible, Aunque las radiaciones y manchas solares han disminuido, la Tierra nunca se va a enfriar por completo ni sus habitantes podrán presenciar nuevamente el Mínimo de Maunder (1645 a 1715), un período donde las manchas solares desaparecieron de la superficie del Sol. El efecto invernadero impide que el planeta se congele.

La preocupación actual es otra. Estas variaciones climáticas del espacio afectan directamente al campo magnético, la ionósfera y la comunicación de la Tierra. Para analizar estos comportamientos aeroespaciales, astrónomos de todo el mundo se reunieron en Quito, desde el lunes 8 de octubre hasta el viernes 12.

En el Congreso astronómico se trataron los Fundamentos de las Ciencias Espaciales, enfocados específicamente en el clima espacial, un fenómeno que preocupa a la comunidad científica desde hace 25 años.

El director del Observatorio Astronómico de Quito, Ericson López, explica que el análisis climático del espacio está ligado a los estudios de los procesos físicos del sistema solar.

"Se estudia los fenómenos del Sol, el viento y las erupciones solares, el comportamiento de las magnetósfera y su influencia en las actividades del ser humano".

Ahora el Sol emite menos radiación y, aunque en marzo del 2013 llegará su máxima actividad, el pico (medición de radiación en vatios por metro cuadrado) será menor que en períodos anteriores. López dice que la reducción de emisión también se puede observar en la ausencia de manchas solares, elementos espaciales que actúan como columnas que impiden que el plasma caliente del sol ingrese a la zona magnética.

Este comportamiento espacial se demuestra en los veranos fríos que ha sufrido la humanidad. añade el director del Observatorio. En el país, esta variación se percibe diferente por la geografia, pues los rayos de Sol-aún cuando su emisión sea escasa- caen perpendicularmente.

Nat Gopalswamy, astrónomo de la Agencia Espacial Norteamericana (NASA), enfatiza que la reducción de radiación - propia de la dinámica evolutiva del Solno logrará congelar el planeta por el efecto invernadero que sufre la Tierra. El astrónomo comenta que cada 100 años, la humanidad vivía una pequeña era de hielo, cuya mayor representación se la conoce como Mínimo de Maunder, pero gases como el dióxido de carbono y su capacidad de retener la energía planetaria, lo impiden totalmente.

Adicional a la radiación del Sol, el astro tiene masa o materia que también afecta a la Tierra.

Gopalswamy, por ejemplo, comenta que cuando las masas solares llegan a la Tierra, presionan la magnetósfera y producen tormentas magnéticas.

Aunque para los habitantes este acontecimiento no es perceptible, sí lo es para el mundo de lastelecomunicaciones.

López añade que la dependencia tecnológica del mundo sí se puede ver afectada porque en los últimos 100 años, la campa magnética se ha reducido en un 10%.

El doctor y profesor Hans J. Haubold, representante de las Naciones Unidas, enfatiza que las partículas del Sol (expulsadas por las tormentas magnéticas) pueden chocar con los satélites, las estaciones espaciales internacionales y los aviones. "Este impacto provocará interferencia directa en los enlaces de comunicación". añade Haubold.

Los líderes y directores de las agencias espaciales internacionales, incluyendo al Observatorio de Quito, divulgarán en las próximas semanas los proyectos para trabajar en cada país. Según López, es necesario compartir el conocimiento científico con entidades estatales para trabajar con la comunidad ecuatoriana.

'Los fenómenos espaciales afectan al mundo de la comunicación'.

Hans J. Haubold Vaciones Unidas

Guillermo Corral/ELCOMERCIO

En el Congreso de Astronomía. Científicos de agencias espaciales del mundo se reunieron en Quito durante cinco días.

'El Congreso fue una muestra de confianza para el Ecuador'.

Ericson López Director Observatorio de Quito

El Congreso Astronómico se desarrolló en Quito

- ElSeminario se realizó con la colaboración de las Naciones Unidas y la Secretaría Nacional de Educación Superior Ciencia Tecnología e Innovación (Senescyt) y el Observatorio de Quito, cuyo director retornará a Estados Unidos como investigador invitado de la U. de Harvard.
- El Workshop fue una oportunidad para demostrar la capacidad científica del país, donde la próxima semana se implementarán sensores para medir el campo magnético.
- Este es el tercer congreso que se realiza a escala mundial. El primero se hizo en Egipto en el 2010 y el año pasado se desarrolló en Nigeria. En este taller se analiza las condiciones de América Latina y el Caribe. Los resultados v proyectos se divulgarán a escalainternacional.
- Participaron 80 astrónomos de la NASA, la Agencia de Exploración Aeroespacial de Japón (JAXA), el Centro Internacional para la Ciencia del Clima Espacial y Educación (ICSWSE) y otros.

Japoneses medirán el campo magnético

CIENCIA

Quito, EFE

CUADERNO.1 | EL COMERCIO | Martes 9 de octubre del 2012

xpertos japoneses y ecuatorianos instalarán la próxima semana un aparato de alta sensibilidad para medir el campo magnético de la Tierra.

Como parte del proyecto llamado 'Magdas', los científicos colocarán el instrumento de medición a 40 km al norte de Quito, en la localidad de Jerusalén, donde se levantará próximamente el Observatorio Astronómico de la capital ecuatoriana, dijo su director, Ericson López.

El aparato se añadirá a una red

de 68 magnetómetros, la mayor de este tipo, que ya recogen datos alrededor del mundo, según indicó el experto japonés George Maeda, encargado del proyecto.

Se trata de un instrumento "muy sensible", uno de los mejores de su tipo, con un costo de USD 40 000 yun peso de 25 kilogramos, de acuerdo con Maeda, quien explicó que su instalación tomará alrededor de cinco días. López explicó que con los datos arrojados por el aparato se podrá analizar el comportamiento y la variación de la magnetósfera, que es el escudo protector de la Tierra, "gracias al que existimos".

This pdf circulated in Vol 4, No. 113, on 30 Oct. 2012.